Citation: Zhi Defu, Bai Yuchao, Zhang Lin, Zhang Shubiao. Research Progress in Magnetic Response Nano-Drug Carriers Based on Super Paramagnetic Iron Oxide[J]. Chemistry, ;2017, 80(11): 987-994, 1060. shu

Research Progress in Magnetic Response Nano-Drug Carriers Based on Super Paramagnetic Iron Oxide

  • Corresponding author: Zhang Shubiao, zsb@dlnu.edu.cn
  • Received Date: 20 May 2017
    Accepted Date: 11 July 2017

Figures(10)

  • The magnetic response nano-drug carriers based on superparamagnetic iron oxide nanoparticles (SPIONs) have been widely used in tumor diagnosis and treatment. Their stability, circulation time and sustained drug release capability are all increased by function modification of the SPIONs. They are combined with targeted ligand molecules, which can enhance their multi-targeting effect. Based on magnetism-and photo-thermal effects of SPIONs and shell materials, they can directly kill tumor cells or peel off the thermo-sensitive shell to release drugs, increase the drug concentration in the tumor site, thereby enhancing the treatment effect of tumor. Herein the progress in the magnetic response nano-drug carriers based on SPIO was reviewed.
  • 加载中
    1. [1]

      D Peer, J M Karp, S Hong et al. Nat. Nanotechnol., 2007, 2(12): 751~760. 

    2. [2]

      S Parveen, S K Sahoo. J. Drug Target., 2008, 16(2): 108~123. 

    3. [3]

       

    4. [4]

       

    5. [5]

       

    6. [6]

       

    7. [7]

      D Zhi, Y Zhao, S Cui et al. Acta Biomater., 2016, 36: 21~41. 

    8. [8]

       

    9. [9]

       

    10. [10]

    11. [11]

    12. [12]

      C Xu, S Sun. Adv. Drug Deliv. Rev., 2013, 65(5): 732~743. 

    13. [13]

       

    14. [14]

       

    15. [15]

       

    16. [16]

      M Mahmoudi, A Simchi, A S Milani et al. J. Colloid Interf. Sci., 2009, 336(2): 510~518. 

    17. [17]

      E V Schneidemesser, P S Monks, J D Allan et al. Chem. Rev., 2015, 115(10): 3856~3897. 

    18. [18]

      C Wang, L Huang, S Song et al. Appl. Surf. Sci., 2015, 357: 2077~2086. 

    19. [19]

      H Sadeghzadeh, Y Pilehvar-Soltanahmadi, A Akbarzadeh et al. Anticancer Agents Med. Chem., 2017, DOI: 10.2174/1871520617666170213115756.

    20. [20]

      W Li, J Zaloga, Y Ding et al. Sci. Reports, 2016, 6: 23140. 

    21. [21]

      W I Choi, J Y Kim, S U Heo et al. J. Control. Release, 2012, 162(2): 267~275. 

    22. [22]

       

    23. [23]

      S Song, X Mao, C Wang et al. Neurosci. Lett., 2015, 584: 135~140. 

    24. [24]

      R Liu, Y Guo, G Odusote et al. ACS Appl. Mater. Interf., 2013, 5(18): 9167~9171. 

    25. [25]

      X Song, X Gu, H Sun et al. J. Nanosci. Nanotechnol., 2016, 16(4): 4100~4107. 

    26. [26]

      Z R Stephen, C J Dayringer, J J Lim et al. ACS Appl. Mater. Interf., 2016, 8(10): 6320~6328. 

    27. [27]

    28. [28]

       

    29. [29]

       

    30. [30]

      N Andhariya, R Upadhyay, R Mehta et al. J. Nanopart. Res., 2013, 15(1): 1416. 

    31. [31]

       

    32. [32]

      Z Medříková, V Novohradsky, J Zajac et al. Chem. Eur. J., 2016, 22(28): 9750~9759. 

    33. [33]

       

    34. [34]

      X Ding, X Shi, X He et al. Mater. Lett., 2016, 175: 236~240.

    35. [35]

      Z Zhang, Q Sun, J Zhong et al. J. Biomed. Nanotechnol., 2014, 10(2): 216~226. 

    36. [36]

      Y Ling, K Wei, Y Luo et al. Biomaterials, 2011, 32(29): 7139~7150. 

    37. [37]

       

    38. [38]

      S Rana, N V Jadhav, K C Barick et al. Dalton Transac., 2014, 43(32): 12263~12271. 

    39. [39]

      A Yao, Q Chen, F Ai et al. J. Mater. Sci. Mater. Med., 2011, 22(10): 2239~2247. 

    40. [40]

      H Kakwere, L M Pernia, M E Materia et al. ACS Appl. Mater. Interf., 2015, 7(19): 10132~10145. 

    41. [41]

       

    42. [42]

      K Maier-Hauff, F Ulrich, D Nestler et al. J. Neuro-Oncol., 2011, 103(2): 317~324. 

    43. [43]

      MagForce AG-Home, Http://www.magforce.de/en/home.html (accessed October 25, 2016).

    44. [44]

       

    45. [45]

       

    46. [46]

    47. [47]

      L Chen, L Wu, F Liu et al. J. Mater. Chem. B, 2016, 4(21): 3660~3669. 

    48. [48]

       

    49. [49]

      J M Shen, T Yin, X Z Tian et al. ACS Appl. Mater. Interf., 2013, 5(15): 7014. 

    50. [50]

      A Espinosa, R Di Corato, J Kolosnjaj-Tabi et al. ACS Nano, 2016, 10(2): 2436~2446. 

    51. [51]

      P Guardia, A Riedinger, S Nitti et al. J. Mater. Chem. B, 2014, 2(28): 4426~4434. 

    52. [52]

    53. [53]

      C Wang, H Xu, C Liang et al. ACS Nano, 2013, 7(8): 6782~6795. 

    54. [54]

      J H Schenkel, A Samanta, B J Ravoo. Adv. Mater., 2014, 26(7): 1076~1080. 

    55. [55]

       

    56. [56]

       

    57. [57]

    58. [58]

       

    59. [59]

      D Mertz, O Sandre, S Begin-Colin. Biochim. Biophys. Acta, 2017, 6: 1617~1641. 

  • 加载中
    1. [1]

      Jie WEIQing ZHOUDandan DINGXiang JINGFei LI . Photothermal toxicity of Prussian blue nanoparticles to cervical cancer cells. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2345-2357. doi: 10.11862/CJIC.20240435

    2. [2]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    3. [3]

      Zhongrui Wang Yuwen Meng Xu Wang . 双层水凝胶的制备及其pH响应变形实验. University Chemistry, 2025, 40(8): 255-264. doi: 10.12461/PKU.DXHX202410038

    4. [4]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    5. [5]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    6. [6]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    7. [7]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    8. [8]

      Lin LIJiaxue LIMeixia YANGJiayu DINGJiaqi JINGRuiping ZHANG . Preparation of mitoxantrone self-assembled carrier-free nanodrugs regulated by sodium acetate for apoptosis induction of human breast carcinoma cells. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2536-2548. doi: 10.11862/CJIC.20250138

    9. [9]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    10. [10]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    11. [11]

      Zihan ChengKai JiangJun JiangHenggang WangHengwei Lin . Achieving thermal-stimulus-responsive dynamic afterglow from carbon dots by singlet-triplet energy gap engineering through covalent fixation. Acta Physico-Chimica Sinica, 2026, 42(2): 100169-0. doi: 10.1016/j.actphy.2025.100169

    12. [12]

      Yuwei LiuYihui ZhuWeijian DuanYizhuo YangHaorui TuoChunhua Feng . Electrocatalytic nitrate reduction on Fe, Fe3O4, and Fe@Fe3O4 cathodes: Elucidating structure-sensitive mechanisms of direct electron versus hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(6): 110347-. doi: 10.1016/j.cclet.2024.110347

    13. [13]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    14. [14]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    15. [15]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    16. [16]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    17. [17]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

    18. [18]

      Yongxin LIUXingchen LIHongjia LIUDanni LITao ZHANGXi CHEN . Enhancement effect of Fe3O4 conversion to MIL-100(Fe) on activation of persulfate for degradation of antibiotic. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2503-2513. doi: 10.11862/CJIC.20250169

    19. [19]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    20. [20]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

Metrics
  • PDF Downloads(33)
  • Abstract views(2775)
  • HTML views(590)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return