Citation: ZHANG Hua-wei, CHEN Jiang-yan, ZHAO Ke, NIU Qing-xin, WANG Li. Removal of vapor-phase elemental mercury from simulated syngas using semi-coke modified by Mn/Ce doping[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(4): 394-400. shu

Removal of vapor-phase elemental mercury from simulated syngas using semi-coke modified by Mn/Ce doping

  • Corresponding author: ZHANG Hua-wei, sdkdzhw@163.com
  • Received Date: 15 December 2015
    Revised Date: 28 January 2016

Figures(7)

  • The Mn-SC and Mn/Ce-SC adsorbents were prepared by modification of semi-coke(SC) with manganese nitrate and cerium nitrate, and their mercury removal performance in simulated syngas was investigated in a lab-scale fix-bed reactor. Effect of cerium and manganese on the surface physical and chemical properties of semi-coke was characterized by Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The results show that BET surface area, average pore size and total pore volume of Mn-SC are higher than those of SC, while Mn/Ce doping modification has adverse effect on the pore structure; MnxOy and CexOy exist in highly dispersive amorphous form on the surface of semi-coke. The mercury removal efficiency of Mn/Ce-SC is higher than that of Mn-SC and SC, and decreases with increase in adsorption temperature. Generally, the Mn/Ce-SC exhibits good mercury removal performance at elevated temperatures. With the presence of 1% of O2, oxidation and reduction reaction cycle could occur on the surface of Mn/Ce-SC, and oxygen in syngas is converted into lattice oxygen with high oxidation activity. Based on the Mars-Maessen mechanism, Hg0 could be oxidized to Hg2+ by lattice oxygen and then adsorbed. The mercury removal efficiency of Mn/Ce-SC maintains over 95% at 260 ℃.
  • 加载中
    1. [1]

      ZHANG Bi, LUO Guang-qian, XU Ping, YU Qiao, QIU Yong, WU Hui, YAO Hong. Effect of oxygen functional groups of activated carbon on mercury adsorption[J]. J Eng Thermophys, 2015,36(7):1611-1615.  

    2. [2]

      WANG Fu-chen, YU Guang-suo, GONG Xin, LIU Hai-feng, WANG Yi-fei, LIANG Qin-feng. Research and development of large-scale coal gasification technology[J]. Chem Ind Eng Prog, 2009,28(2):173-180.  

    3. [3]

      HOU Wen-hui, ZHOU Jin-song, ZHANG Yi, GAO Xiang, LUO Zhong-yang, CEN Ke-fa. Effect of H2S on elemental mercury removal in coal gas by Fe2O3[J]. Proc CSEE, 2013,33(23):92-98.

    4. [4]

      LU DY, GRANATSTEIN D L, ROSE D J. Study of mercury speciation from simulated coal gasification[J]. Ind Eng Chem Res, 2004,43(17):5400-5404. doi: 10.1021/ie034121u

    5. [5]

      ZHAO Yi, MA Shuang-chen, HUA Wei, PANG Geng-lin. Study on the control technique and the law of transport for mercury resulting from combustion of coal in power plant[J]. Tech Equip Environ Pollut Control, 2003,4(11):59-63.  

    6. [6]

      YU Xian-qun, BAO Jing-jing, JIANG Xiao-xiang, YANG Hong-min. Performance and mechanism of catalytic oxidation for mercury by Mn-doped TiO2 catalysts in flue gas[J]. Proc CSEE, 2015,35(13):3331-3337.

    7. [7]

      CENTENO M A, PAULIS M, MONTES M, ODRIOZOLA J A. Catalytic combustion of volatile organic compounds on Au/CeO2/Al2O3 and Au/Al2O3 catalysts[J]. Appl Catal A: Gen, 2002,234(1/2):65-78.  

    8. [8]

      ZHOU R, CAO Y, YAN S R, FAN K N. Rare earth(Y, La, Ce)-promoted V-HMS mesoporous catalysts for oxidative dehydrogenation of propane[J]. Appl Catal A: Gen, 2002,236:103-111. doi: 10.1016/S0926-860X(02)00281-8

    9. [9]

      REDDY B M, KHAN A, YAMADA Y, TETSUHIKO K, LORIDANT S, VOLTA J C. Structural characterization of CeO2/TiO2 and V2O5/CeO2-TiO2 catalysts by Raman and XPS techniques[J]. J Phys Chem B, 2003,107(22):5162-5167.

    10. [10]

      TAO S S, LI C T, FAN X P, ZENG G M, LU P, ZHANG X, WEN Q B, ZHAO W W, LUO D Q, FAN C Z. Activated coke impregnated with cerium chloride used for elemental mercury removal from simulated flue gas[J]. Chem Eng J, 2012,210:547-556. doi: 10.1016/j.cej.2012.09.028

    11. [11]

      LI H L, WU C Y, LI Y, LI L Q, ZHAO Y C, ZHANG J Y. Role of flue gas components in mercury oxidation over TiO2 supported MnOx-CeO2 mixed-oxide at low temperature[J]. J Hazard Mater, 2012,243:117-123. doi: 10.1016/j.jhazmat.2012.10.007

    12. [12]

      LIU Jie, BAI Yan-xia, TIAN Yu-li, HUANG Xiang-yu, WANG Chun-hua, LIANG Jie-ying. Effect of the process of electrochemical modification on the surface structure and properties of PAN-based carbon fibers[J]. Acta Mater Compos Sin, 2012,29(2):16-25.  

    13. [13]

      HE C, SHEN B X, CHEN J H, CAI J. Adsorption and oxidation of elemental mercury over Ce-MnOx/Ti-PILCs[J]. Enviro Sci Technol, 2014,48:7891-7898. doi: 10.1021/es5007719

    14. [14]

      HAN Wei, LIN Ren-cun, XIE Zhao-xiong, WANG Shui-ju. XRD and XPS study on the CeO2 catalyst for dehydrogenation of ethylbenzene[J]. J Xiamen Univ(Nat Sci), 2008,47(5):701-704.

    15. [15]

      MULLINS D R, OVERBURY S H, HUNTLEY D R. Electron spectroscopy of single crystal and polycrystalline cerium oxide surface[J]. Surf Sci, 1998,409(2):307-319. doi: 10.1016/S0039-6028(98)00257-X

    16. [16]

      WANG Jun-wei, LIU Rui-qing. Hg0 removal by an activated coke-supported MnO2 catalyst[J]. Acta Sci Circum, 2012,32(9):2261-2266.

    17. [17]

      WU Peng, TENG Ji-lin, ZHANG Xu-hui, ZHAO Yue-ju. Influence of modified lignite activated coke on mercury removal from simulated flue gas[J]. Clean Coal Tcehnol, 2015,21(2):40-44.  

    18. [18]

      GRANITE E J, PENNLINE H W, HARGIS R A. Novel sorbents for mercury removal from flue gas[J]. Ind Eng Chem Res, 2000,39(4):1020-1029. doi: 10.1021/ie990758v

    19. [19]

      ZHANG An-chao, ZHANG Hong-liang, SONG Jun, SHENG Wei, ZHENG Wen-wen. Characterization and performance of Mn-Co/MCM-41 for elemental mercury removal from simulated flue gas[J]. China Enviro Sci, 2015,35(5):1319-1327.  

    20. [20]

      LU X N, SONG C Y, JIA S H, TONG Z S, TANG X L, TENG Y X. Low-temperature selective catalytic reduction of NOx with NH3 over cerium and manganese oxides supported on TiO2-graphene[J]. Chem Eng J, 2015,260:776-784. doi: 10.1016/j.cej.2014.09.058

    21. [21]

      LI J F, YAN N Q, QU Z, QIAO S H, YANG S J, GUO Y F, LIU P, JIA J P. Catalytic oxidation of elemental mercury over the modified catalyst Mn/γ-Al2O3 at lower temperatures[J]. Enviro Sci Technol, 2010,44(1):426-431. doi: 10.1021/es9021206

    22. [22]

      TAN Zeng-qiang, NIU Guo-ping, CHEN Xiao-wen, AN Zhen. Removal characteristics of elemental mercury by Mn-Ce/molecular sieve[J]. Environ Sci, 2015,35(6):1983-1988.  

    23. [23]

      TANG W X, WU X F, LIU G, LI S D, LI D Y, LI W H, CHEN Y F. Preparation of hierarchical layer-stacking Mn-Ce composite oxide for catalytic total oxidation of VOCs[J]. J Rare Earth, 2013,33(1):62-69.  

  • 加载中
    1. [1]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    2. [2]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    3. [3]

      Huanyu LiuGang YuRuoyao GuoHao QiJiayin ZhengTong JinZifeng ZhaoZuqiang BianZhiwei Liu . Direct identification of energy transfer mechanism in Ce-Mn system by constructing molecular heteronuclear complexes. Chinese Chemical Letters, 2025, 36(2): 110296-. doi: 10.1016/j.cclet.2024.110296

    4. [4]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    5. [5]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    6. [6]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    7. [7]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    8. [8]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    9. [9]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    10. [10]

      Meng WangYan ZhangYunbo YuWenpo ShanHong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928

    11. [11]

      Jinyuan Cui Tingting Yang Teng Xu Jin Lin Kunlong Liu Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438

    12. [12]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    13. [13]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    14. [14]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    15. [15]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    16. [16]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    17. [17]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    18. [18]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    19. [19]

      Jianing HeXiao WangZijian WangRuize JiangKe WangRui ZhangHuilin WangBaokang GengHongyi GaoShuyan SongHongjie Zhang . Investigation on Cu promotion effect on Ce-based solid solution-anchored Rh single atoms for three-way catalysis. Chinese Chemical Letters, 2025, 36(2): 109640-. doi: 10.1016/j.cclet.2024.109640

    20. [20]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

Metrics
  • PDF Downloads(0)
  • Abstract views(440)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return