Citation: Hu Ziqiao, Liu Guichuan, Kong Yong, Lin Yongxue, Jin Junbin. Syntheses and Catalytic Applications of Palladacycles Complexes[J]. Chemistry, ;2019, 82(1): 32-36. shu

Syntheses and Catalytic Applications of Palladacycles Complexes

  • Received Date: 7 September 2018
    Accepted Date: 7 October 2018

Figures(12)

  • Due to their abundant structures, high stability and excellent catalytic properties, palladacycles complexes have become one of the hotspots in the research of palladium chemistry. A number of synthesis methods have been developed, such as C-H bond activation, oxidation addition, metal transfer, nucleophilic addition, and ligand exchange. The CY type palladacycles complexes from ternary ring to eleven-membered ring and YCY type palladacycles complexes have been afforded. Palladacycles complexes have been utilized in olefin hydrogenation, coupling reaction, asymmetric catalysis, and other reactions. In this article, the types of palladacycles complexes were briefly introduced. The synthesis methods and application for catalytic reactions of palladacycles complexes were focused on. The development suggestions of palladacycles complexes for synthesis and catalytic application were proposed.
  • 加载中
    1. [1]

       

    2. [2]

       

    3. [3]

       

    4. [4]

      R B Bedford. Chem. Commun., 2003, (15):1787~1796. 

    5. [5]

      I P Beletskaya, A V Cheprakov. J. Organomet. Chem., 2004, 689(24):4055~4082. 

    6. [6]

      J Dupont, C S Consorti, J Spencer. Chem. Rev., 2005, 105(6):2527~2571. 

    7. [7]

      A C Cope, E C Friedrich. J. Am. Chem. Soc., 1968, 90(4):909~911. 

    8. [8]

      J Dupont, M Pfeffer, J Spencer. Eur. J. Inorg. Chem., 2001, (8):1917~1927.

    9. [9]

      D Sole, L Vallverdu, X Solans et al. J. Am. Chem. Soc., 2003, 125(6):1587~1594. 

    10. [10]

      D Zim, S L Buchwald. Org. Lett., 2003, 5(14):2413~2415. 

    11. [11]

      D Morales-Morales, R Redon, C Yung et al. Chem. Commun., 2000, (17):1619~1634. 

    12. [12]

      S G Koller, R Martín-Romo, J S Melero et al. Organometallics, 2014, 33(24):7329~7332. 

    13. [13]

      M Oliva-Madrid, J García-López, I Saura-Llamas et al. Organometallics, 2014, 33(22):6420~6430. 

    14. [14]

      G Ebeling, M R Meneghetti, F Rominger et al. Organometallics, 2002, 21(15):3221~3227. 

    15. [15]

      S Molitor, C Schwarz, V H Gessner. Organometallics, 2016, 35(2):159~167. 

    16. [16]

      C S Consorti, G Ebeling, F Rodembusch et al. Inorg. Chem., 2004, 43(2):530~536. 

    17. [17]

       

    18. [18]

      E A B Kantchev, G Peh, C Zhang. Org. Lett., 2008, 10(8):3949~3952.

    19. [19]

      E A B Kantchev, J Y Ying. Organometallics, 2009, 28(1):289~299. 

    20. [20]

      Y Kong, L Wen, H Song et al. Organometallics, 2011, 30(1):153~159. 

    21. [21]

    22. [22]

      M Li, H Song, B Wang. Organometallics, 2015, 34(10):1969~1977. 

    23. [23]

    24. [24]

    25. [25]

       

    26. [26]

      L Dang, H Song, B Wang. Organometallics, 2014, 33(23):6812~6818. 

    27. [27]

      S Sara, A M Jose, P Eduardo. Organometallics, 2013, 32(4):1112~1120. 

    28. [28]

       

    29. [29]

       

    30. [30]

       

    31. [31]

       

    32. [32]

       

    33. [33]

      M Liu, P Yang, M K Karunananda et al. J. Am. Chem. Soc., 2018, 140(17):5805~5813. 

    34. [34]

      M Nowotny, U Hanefeld, H Koningsveld et al. Chem. Commun., 2000, (19):1877~1878. 

    35. [35]

      X Gai, R Grigg, M I Ramzan et al. Chem. Commun., 2000, (20):2053~2054. 

    36. [36]

    37. [37]

      M L O'Duill, R Matsuura, Y Wang et al. J. Am. Chem. Soc., 2017, 139(44):15576~15579. 

    38. [38]

      P K Santra, C R Saha. J. Mol. Catal., 1987, 39(3):279~292. 

    39. [39]

      A Bose, C R Saha. J. Mol. Catal., 1989, 49(3):271~283. 

    40. [40]

      D Morales-Morales, R Redon, C Yung et al. Chem. Commun., 2000, (17):1619~1670. 

    41. [41]

      D A Lonso, C Nejera, M C Pacheco. Org. Lett., 2000, 2(13):1823~1826. 

    42. [42]

      D E Bergbreiter, P L Osburn, A Wilson et al. J. Am. Chem. Soc., 2000, 122(38):9058~9064. 

    43. [43]

      A S Gruber, D Zim, G Ebeling et al. Org. Lett., 2000, 2(9):1287~1290 

    44. [44]

      D Zim, A S Gruber, G Ebeling et al. Org. Lett., 2000, 2(18):2881~2884. 

    45. [45]

      X Gai, R Grigg, M I Ramzan et al. Chem. Commun., 2000, (20):2053~2054. 

    46. [46]

      S Darses, G Michaud, J P Genet. Eur. J. Org. Chem., 1999, (8):1875~1883.

    47. [47]

      M S Viciu, R A Ⅲ Kelly, E D Stevens et al. Org. Lett., 2003, 5(9):1479~1482. 

    48. [48]

      G D Frey, J Schütz, E Herdtweck et al. Organometallics, 2005, 24(18):4416~4426. 

    49. [49]

      O Navarro, N Marion, Y Oonishi et al. J. Org. Chem., 2006, 71(2):685~692. 

    50. [50]

      L Jin, W Wei, N Sun et al. Org. Chem. Front., 2018, 5(16):2484~2491. 

    51. [51]

      J Broggi, H Clavier, S P Nolan. Organometallics, 2008, 27(21):5525~5531. 

    52. [52]

      B Alexandre, R Maxime, M Alami et al. ACS Catal., 2015, 5(2):1386~1396. 

    53. [53]

      N Marion, S P Nolan. Acc. Chem. Res., 2008, 41(11):1440~1449. 

    54. [54]

      R Navarro, E P Urriolabeitia, C Cativiela et al. J. Mol. Catal. A, 1996, 105(3):111~116. 

    55. [55]

      M A Stark, G Jones, C J Richards. Organometallics, 2000, 19(7):1282~1291. 

  • 加载中
    1. [1]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    2. [2]

      Wenjuan SHIYuke LUXiuyuan LILei HOUYaoyu WANG . Mg(Ⅱ) metal-organic frameworks based on biphenyltetracarboxylic acid: Synthesis and CO2 adsorption and catalytic conversion performance. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2455-2463. doi: 10.11862/CJIC.20250220

    3. [3]

      Ying Chen Ronghua Yan Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066

    4. [4]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    5. [5]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    6. [6]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    7. [7]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    8. [8]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    9. [9]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    10. [10]

      Lixing ZHANGYaowen WANGXu HANJunhong ZHOUJinghui WANGLiping LIGuangshe LI . Research progress in the synthesis of fluorine-containing perovskites and their derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1689-1701. doi: 10.11862/CJIC.20250007

    11. [11]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    12. [12]

      Yongxin LIUXingchen LIHongjia LIUDanni LITao ZHANGXi CHEN . Enhancement effect of Fe3O4 conversion to MIL-100(Fe) on activation of persulfate for degradation of antibiotic. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2503-2513. doi: 10.11862/CJIC.20250169

    13. [13]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    14. [14]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    15. [15]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    16. [16]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    17. [17]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    18. [18]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    19. [19]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    20. [20]

      Zhiqiang XINGJinling LIUMingmin SULei ZHANGLijun YANG . CoNi dual-single-atom catalyst for electrocatalytic H2O2 production and in situ electro-Fenton degradation of pollutants. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2479-2490. doi: 10.11862/CJIC.20250181

Metrics
  • PDF Downloads(6)
  • Abstract views(533)
  • HTML views(56)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return