Citation: Zhang Xiaohui, Yang Limin, Ma Hongchao, Jiang Lei. Application of Quantum Dot Sensors in the Detection of Organophosphorus Pesticide Residues[J]. Chemistry, ;2017, 80(11): 1014-1020. shu

Application of Quantum Dot Sensors in the Detection of Organophosphorus Pesticide Residues

  • Corresponding author: Jiang Lei, leijiang@upc.edu.cn
  • Received Date: 23 May 2017
    Accepted Date: 29 July 2017

Figures(3)

  • As a nerve agent, the organophosphorus pesticide has been overused with many potential hazards, such as crops and environmental pollution, toxicity toward people and animals, etc. The investigation of highly sensitive and specific method for the detection of organophosphorus pesticide residues is of great significance for the food safety and human health. Owing to the advantages of high sensitivity, specificity, rapid response, and easy operation, the approach based on quantum dot sensors has become a hot topic in the field of organophosphorus pesticide detection. In this paper, the application of quantum dot sensors in the detection of organophosphorus pesticide residues in the crops, environment and biological sample was reviewed, and the prospect of this field was also discussed.
  • 加载中
    1. [1]

       

    2. [2]

       

    3. [3]

      P Kumar, K H Kim, A Deep. Biosens. Bioelectron., 2015, 70: 469~481. 

    4. [4]

      D Knapton, M Burnworth, S J Rowan et al. Angew. Chem. Int. Ed., 2006, 45(35): 5825~5829. 

    5. [5]

      A Smith, S Gangolli. Food Chem. Toxicol., 2002, 40(6): 767~779.

    6. [6]

      A J Starmer, N D Spector, R Srivastava et al. New Engl. J. Med., 2014, 371(19): 1803~1812.

    7. [7]

      A M Aboul-Enein, F Abou Elella, E Abdullah. J. Appl. Sci. Res., 2010, 6(6): 600~608. 

    8. [8]

       

    9. [9]

      X Zhao, W Kong, J Wei et al. Food Chem., 2014, 162: 270~276. 

    10. [10]

      K Seebunrueng, Y Santaladchaiyakit, S Srijaranai. Talanta, 2015, 132: 769~774. 

    11. [11]

       

    12. [12]

      J L Armstrong, R L Dills, J Yu et al. J. Environ. Sci. Heal. A, 2014, 49(2): 102~108. 

    13. [13]

      M A Kalwat, C Wichaidit, A Y Nava Garcia et al. ACS Sensors, 2016, 1(10): 1208~1212.

    14. [14]

      R Brasca, M C Onaindia, H C Goicoechea et al. Sensors, 2016, 16(10): 1652.

    15. [15]

      G S Kulkarni, K Reddy, Z Zhong et al. Nat. Commun., 2014, 5: 4736. 

    16. [16]

      C M Tyrakowski, P T Snee. Anal. Chem., 2014, 86(5): 2380~2386. 

    17. [17]

      W Zhang, A M Asiri, D Liu et al. Trend. Anal. Chem., 2014, 54: 1~10.

    18. [18]

      D H Shin, S Kim, J M Kim et al. Adv. Mater., 2015, 27(16): 2614~2620. 

    19. [19]

      J Callan, F M Raymo. Quantum Dot Sensors: Technology and Commercial Applications. Pan Stanford Publishing, 2013.

    20. [20]

      M F Frasco, N Chaniotakis. Sensors, 2009, 9(9): 7266~7286. 

    21. [21]

      G Xue, Z Yue, Z Bing et al. Analyst, 2016, 141(16): 4941~4946. 

    22. [22]

      J Guo, H Li, M Xue et al. Food Anal. Method., 2014, 7(6): 1247~1255. 

    23. [23]

      Z Zheng, Y Zhou, X Li et al. Biosens. Bioelectron., 2011, 26(6): 3081~3085. 

    24. [24]

      C S Jacobsen, M H Hjelmsø. Curr. Opin. Biotechnol., 2014, 27: 15~20. 

    25. [25]

      A Ivanov, R Younusov, G Evtugyn et al. Talanta, 2011, 85(1): 216~221. 

    26. [26]

      A Sahin, K Dooley, D M Cropek et al. Sens. Actuat. B, 2011, 158(1): 353~360. 

    27. [27]

      M Kiani, M A Tehrani, H Sayahi. Anal. Chim. Acta, 2014, 839: 26~33. 

    28. [28]

      E Milkani, C R Lambert, W G McGimpsey. Anal. Biochem., 2011, 408(2): 212~219. 

    29. [29]

       

    30. [30]

      B Pérez-López, A Merkoçi. Adv. Funct. Mater., 2011, 21(2): 255~260. 

    31. [31]

      G A Alonso, G Istamboulie, T Noguer et al. Sens. Actuat. B, 2012, 164(1): 22~28. 

    32. [32]

      R K Mishra, R B Dominguez, S Bhand et al. Biosens. Bioelectron., 2012, 32(1): 56~61. 

    33. [33]

      D de Almeida Azevedo, S Lacorte, T Vinhas et al. J. Chromatogr. A, 2000, 879(1): 13~26. 

    34. [34]

      X Li, Z Zheng, X Liu et al. Biosens. Bioelectron., 2015, 64: 1~5. 

    35. [35]

      D Wang, J He, N Rosenzweig et al. Nano Lett., 2004, 4(3): 409~413. 

    36. [36]

      N H Nguyen, T G Duong, N T Pham et al. Adv. Nat. Sci. : Nanosci. Nanotechnol., 2015, 6(1): 015015. 

    37. [37]

      T K C Tran, D C Vu, T D T Ung et al. Adv. Nat. Sci. : Nanosci. Nanotechnol., 2012, 3(3): 035008. 

    38. [38]

       

    39. [39]

      X Meng, J Wei, X Ren et al. Biosens. Bioelectron., 2013, 47: 402~407. 

    40. [40]

      R Ban, J Zhu, J Zhang. Microchim. Acta, 2014, 181(13-14): 1591~1599. 

    41. [41]

      Y Yi, G Zhu, C Liu et al. Anal. Chem., 2013, 85(23): 11464~11470.

    42. [42]

      X Gao, G Tang, X Su. Biosens. Bioelectron., 2012, 36(1): 75~80. 

    43. [43]

      M C Mancini, B A Kairdolf, A M Smith et al. J. Am. Chem. Soc., 2008, 130(33): 10836~10837. 

    44. [44]

      K Lai, N J Stolowich, J R Wild. Arch. Biochem. Biophys., 1995, 318(1): 59~64. 

    45. [45]

      R V Cooney P D Ross. J. Agric. Food Chem., 1987, 35(5): 789~793. 

    46. [46]

      X Yan, H Li, X Wang et al. Talanta, 2015, 131: 88~94. 

    47. [47]

      N Biricik, B Gümgüm. Thermochim. Acta, 2004, 417(1): 43~45. 

    48. [48]

      X Yan, H Li, Y Yan et al. Food Chem., 2015, 173: 179~184.

    49. [49]

      X Ji, J Zheng, J Xu et al. J. Phys. Chem. B, 2005, 109(9): 3793~3799. 

    50. [50]

      X Yan, H Li, X Han et al. Biosens. Bioelectron., 2015, 74: 277~283. 

    51. [51]

      D Du, W Chen, W Zhang et al. Biosens. Bioelectron., 2010, 25(6): 1370~1375. 

    52. [52]

      S Umrao, M H Jang, J H Oh et al. Carbon, 2015, 81: 514~524. 

    53. [53]

      K Zhang, Q Mei, G Guan et al. Anal. Chem., 2010, 82(22): 9579~9586. 

    54. [54]

      Q Sun, Q Yao, Z Sun et al. Chin. J. Chem., 2011, 29(10): 2134~2140.

    55. [55]

      L Miranda-Contreras, R Gómez-Pérez, G Rojas et al. J. Occup. Health, 2013, 55(3): 195~203. 

    56. [56]

      M G Lionetto, R Caricato, A Calisi et al. Biomed. Res. Int., 2013, 2013. 

    57. [57]

      A A Malekirad, M Faghih, M Mirabdollahi et al. Arch. Ind. Hygiene Toxicol., 2013, 64(1): 1~8. 

    58. [58]

       

    59. [59]

      N Taheri, M Lan, P Wei et al. Food Anal. Method., 2016, 9(10): 2896~2905. 

    60. [60]

      A Uclés, A V García, M D G García et al. Anal. Methods, 2015, 7(21): 9158~9165. 

    61. [61]

      G Liu, J Wang, R Barry et al. Chem. Eur. J., 2008, 14(32): 9951~9959. 

    62. [62]

      W Zhang, X Ge, Y Tang et al. Analyst, 2013, 138(18): 5431~5436.

    63. [63]

      H Wang, J Wang, C Timchalk et al. Anal. Chem., 2008, 80(22): 8477~8484.

    64. [64]

      X Zhang, H Wang, C Yang et al. Biosens. Bioelectron., 2013, 41: 669~674. 

    65. [65]

      U Aryal, C Lin, J Kim et al. Anal. Chim. Acta, 2012, 723: 68~75. 

    66. [66]

      D Du, J Wang, L Wang et al. Anal. Chem., 2011, 83(10): 3770~3777.

    67. [67]

      K B Woodburn, W R Green, H E Westerdahl. J. Agric. Food Chem., 1993, 41(11): 2172~2177. 

    68. [68]

      K Maya, R Singh, S Upadhyay et al. Process Biochem., 2011, 46(11): 2130~2136. 

    69. [69]

      Z Zou, D Du, J Wang et al. Anal. Chem., 2010, 82(12): 5125~5133.

    70. [70]

  • 加载中
    1. [1]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    2. [2]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    3. [3]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    4. [4]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    5. [5]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    6. [6]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    7. [7]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    8. [8]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    9. [9]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    10. [10]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    11. [11]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    12. [12]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    13. [13]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    14. [14]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    15. [15]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    16. [16]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    17. [17]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    18. [18]

      Hao Ren Wen Zhao Fangna Dai Wenyue Guo . Finite Difference Solution of One-Dimensional Quantum Systems: (1) Fundamental Concepts and Infinite Square Well. University Chemistry, 2025, 40(3): 124-131. doi: 10.12461/PKU.DXHX202405145

    19. [19]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    20. [20]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

Metrics
  • PDF Downloads(18)
  • Abstract views(4112)
  • HTML views(938)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return