Catalytic fructose dehydration to 5-hydroxymethylfurfural over sulfonated carbons with hierarchically ordered pores
- Corresponding author: CUI Hong-you, cuihy@sdut.edu.cn YI Wei-ming, yiweiming@sdut.edu.cn
Citation:
WANG Jian-gang, ZHANG Yun-yun, WANG Yong, ZHU Li-wei, CUI Hong-you, YI Wei-ming. Catalytic fructose dehydration to 5-hydroxymethylfurfural over sulfonated carbons with hierarchically ordered pores[J]. Journal of Fuel Chemistry and Technology,
;2016, 44(11): 1341-1348.
CAI H, LI C, WANG A, ZHANG T. Biomass into chemicals:One-pot production of furan-based diols from carbohydrates via tandem reactions[J]. Catal Today, 2014,234(10):59-65.
KAZI F K, PATEL A D, SERRANO-RUIZ J C, DUMESIC J A, ANEX R P. Techno-economic analysis of dimethylfuran (DMF) and hydroxymethylfurfural (HMF) production from pure fructose in catalytic processes[J]. Chem Eng J, 2011,169(1/3):329-338.
RAS E J, MAISULS S, HAESAKKERS P, GRUTER G J, ROTHENBERG G. Selective hydrogenation of 5-ethoxymethylfurfural over alumina-supported heterogeneous catalysts[J]. Adv Synth Catal, 2009,351(18):3175-3185. doi: 10.1002/adsc.v351:18
TONG X, MA Y, LI Y. Biomass into chemicals:Conversion of sugars to furan derivatives by catalytic processes[J]. Appl Catal A:Gen, 2010,385(1/2):1-13.
SCHUETTE H A, THOMAS R W. Normal valerolaction. Ⅲ. Its preparation by the catalytic reduction of levulinic acid with hydrogen in the presence of platinum oxide[J]. Chem Eur J, 2012,18(17):5256-5260. doi: 10.1002/chem.v18.17
PEDERSEN A T, RINGBORG R, GROTKJÆR T, PEDERSEN S, WOODLEY J M. Synthesis of 5-hydroxymethylfurfural (HMF) by acid catalyzed dehydration of glucose-fructose mixtures[J]. Chem Eng J, 2015,273(1):455-464.
ZHANG J, YU X, ZOU F, ZHONG Y, DU N, HUANG X. Room-temperature ionic liquid system converting fructose into 5-hydroxymethylfurfural in high efficiency[J]. ACS Sustainable Chem Eng, 2015,3(12):3338-3345. doi: 10.1021/acssuschemeng.5b01015
CHOUDHARY V, MUSHRIF S H, HO C, ANDERKO A, NIKOLAKIS V, MARINKOVIC N S, FRENKEL A I, SANDLER S I, VLACHOS D G. Insights into the interplay of Lewis and Bronsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl) furfural and levulinic acid in aqueous media[J]. J Am Chem Soc, 2013,135(10):3997-4006. doi: 10.1021/ja3122763
KRUGER J S, NIKOLAKIS V, VLACHOS D G. Aqueous-phase fructose dehydration using Brønsted acid zeolites:Catalytic activity of dissolved aluminosilicate species[J]. Appl Catal A:Gen, 2014,469(2):116-123.
SAMPATH G, KANNAN S. Fructose dehydration to 5-hydroxymethylfurfural:Remarkable solvent influence on recyclability of Amberlyst-15 catalyst and regeneration studies[J]. Catal Commun, 2013,37(13):41-44.
WANG F, WU H Z, LIU C L, YANG R Z, DONG W S. Catalytic dehydration of fructose to 5-hydroxymethylfurfural over Nb2O5 catalyst in organic solvent[J]. Carbohydr Res, 2013,368(10):78-83.
ZAREYEE D, ALIZADEH P, GHANDALI M S, KHALILZADEH M A. Solvent-free acetylation and tetrahydropyranylation of alcohols catalyzed by recyclable sulfonated ordered nanostructured carbon[J]. Chem Pap, 2013,67(7):713-721.
GALHARDO T S, SIMONE N, GONCALVES M, FIGUEIREDO F C A, MANDELLI D, CARVALHO W A. Preparation of sulfonated carbons from rice husk and their application in catalytic conversion of glycerol[J]. ACS Sustainable Chem Eng, 2013,1(11):1381-1389. doi: 10.1021/sc400117t
YAN L, LIU N, WANG Y, MACHIDA H, QI X. Production of 5-hydroxymethylfurfural from corn stalk catalyzed by corn stalk-derived carbonaceous solid acid catalyst[J]. Bioresour Technol, 2014,173(22):462-466.
KARIMI B, MIRZAEI H M, BEHZADNIA H, VALI H. Novel ordered mesoporous carbon based sulfonic acid as an efficient catalyst in the selective dehydration of fructose into 5-HMF:The role of solvent and surface chemistry[J]. ACS Appl Mater Inter, 2015,7(34):19050-19059. doi: 10.1021/acsami.5b03985
HU L, TANG X, WU Z, LIN L, XU J, XU N, DAI B. Magnetic lignin-derived carbonaceous catalyst for the dehydration of fructose into 5-hydroxymethylfurfural in dimethylsulfoxide[J]. Chem Eng J, 2015,263(2):299-308.
ZHAO J, ZHOU C, HE C, DAI Y, JIA X, YANG Y. Efficient dehydration of fructose to 5-hydroxymethylfurfural over sulfonated carbon sphere solid acid catalysts[J]. Catal Today, 2015,264(4):123-130.
ORDOMSKY V V, SCHOUTEN J C, SCHAAF J V D, NIJHUIS T A. Foam supported sulfonated polystyrene as a new acidic material for catalytic reactions[J]. Chem Eng J, 2012,207-208(5):218-225.
XIA Y, YANG Z, GOU X, ZHU Y. A simple method for the production of highly ordered porous carbon materials with increased hydrogen uptake capacities[J]. Int J Hydrogen Energy, 2013,38(12):5039-5052. doi: 10.1016/j.ijhydene.2013.02.037
YUN Y S, PARK D J, MIN J J, JIN H J. 3-D ordered bimodal porous carbon/nickel oxide hybrid electrodes for supercapacitors[J]. Synth Met, 2013,177(8):105-109.
ZHANG T, ZHANG Q, GE J, GOEBL J, SUN M, YAN Y, LIU Y S, CHANG C, GUO J, YIN Y. A self-templated route to hollow silica microspheres[J]. J Phys Chem C, 2008,113(8):3168-3175.
ZHENG F C, CHEN Q W, HU L, YAN N, KONG X K. Synthesis of sulfonic acid-functionalized Fe3O4@C nanoparticles as magnetically recyclable solid acid catalysts for acetalization reaction[J]. Dalton Trans, 2014,43(3):1220-1227. doi: 10.1039/C3DT52098F
ZHAO Q, WANG X, LIU J, WANG H, ZHANG Y, GAO J, LU Q, ZHOU H. Design and synthesis of three-dimensional hierarchical ordered porous carbons for supercapacitors[J]. Electrochim Acta, 2015,154(4):110-118.
XUE C, TU B, ZHAO D. Facile fabrication of hierarchically porous carbonaceous monoliths with ordered mesostructure via an organic organic self-assembly[J]. Nano Res, 2009,2(3):242-253. doi: 10.1007/s12274-009-9022-y
ZHOU W, YOSHINO M, HIDETOSHI KITA H, OKAMOTO K. Carbon molecular sieve membranes derived from phenolic resin with a pendant sulfonic acid group[J]. Ind Eng Chem Res, 2001,40(22):4801-4807. doi: 10.1021/ie010402v
CEPEDA-JIMENEZ C M, PASTOR-BLAS M M, FERRANDIZ-GOMEZ T P, MARTIN-MARTINNEZ J M. Influence of the styrene content of thermoplastic styrene-butadiene rubbers in the effectiveness of the treatment with sulfuric acid[J]. Int J Adhes Adhes, 2001,21(2):161-172. doi: 10.1016/S0143-7496(00)00048-8
OKAMURA M, TAKAGAKI A, TODA M, KONDO J N, DOMEN K, TATSUMI T, HARA M, HAYASHI S. Acid-catalyzed reactions on flexible polycyclic aromatic carbon in amorphous carbon[J]. Chem Mater, 2006,18(13):3039-3045. doi: 10.1021/cm0605623
SHIMIZU K I, UOZUMI R, SATSUMA A. Enhanced production of hydroxymethylfurfural from fructose with solid acid catalysts by simple water removal methods[J]. Catal Commun, 2009,10(14):1849-1853. doi: 10.1016/j.catcom.2009.06.012
AMARASEKARA A S, WILLIAMS L T D, EBEDE C C. Mechanism of the dehydration of D-fructose to 5-hydroxymethylfurfural in dimethyl sulfoxide at 150 degrees C:An NMR study[J]. Carbohydr Res, 2008,343(18):3021-3024. doi: 10.1016/j.carres.2008.09.008
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
Yangrui Xu , Yewei Ren , Xinlin Liu , Hongping Li , Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032
.
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
Ruiqing LIU , Wenxiu LIU , Kun XIE , Yiran LIU , Hui CHENG , Xiaoyu WANG , Chenxu TIAN , Xiujing LIN , Xiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441
Zhifang SU , Zongjie GUAN , Yu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290
Zhuo WANG , Xiaotong LI , Zhipeng HU , Junqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
Yongwei ZHANG , Chuang ZHU , Wenbin WU , Yongyong MA , Heng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
Ping Ye , Lingshuang Qin , Mengyao He , Fangfang Wu , Zengye Chen , Mingxing Liang , Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
Zhiyuan TONG , Ziyuan LI , Ke ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238
Youlin SI , Shuquan SUN , Junsong YANG , Zijun BIE , Yan CHEN , Li LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
Aimin Fu , Chunmei Chen , Qin Li , Nanjin Ding , Jiaxin Dong , Yu Chen , Mengsha Wei , Weiguang Sun , Hucheng Zhu , Yonghui Zhang . Niduenes A−F, six functionalized sesterterpenoids with a pentacyclic 5/5/5/5/6 skeleton from endophytic fungus Aspergillus nidulans. Chinese Chemical Letters, 2024, 35(9): 109100-. doi: 10.1016/j.cclet.2023.109100
(a): HOPC-500; (b): HOPC-600; (c): HOPC-700; (d): SCHOP-500; (e): SCHOP-600; (f): SCHOP-700; (g): SCHOP-500; (h): SCHOP-600; (i): SCHOP-700
a: SCHOP-500; b: SCHOP-600; c: SCHOP-700
a: SCHOP-500; b: SCHOP-600; c: SCHOP-700
(reaction conditions: 1.0 g fructose in 30 mL DMSO, reacting for 20 min in the presence of 0.5 g SCHOP-500) ■: fructose conversion; ●: 5-HMF yield; ▲ : 5-HMF selectivity
(reaction conditions: 1.0 g fructose in 30 mL DMSO at 130 ℃ with 0.5 g SCHOP-500)■: fructose conversion; ●: 5-HMF yield; ▲ : 5-HMF selectivity
(reaction conditions: 1.0 g fructose in 30 mL DMSO, reacting for 20 min at 130 ℃ in the presence of 0.5 g catalyst)