Citation: Xu Leyan, Wang Ningyue, Yang Mingling, Wang Xiaoyong. Influence of Carrageenan Charge on the Encapsulation Properties of Curcumin in BSA/Carrageenan Complexes[J]. Chemistry, ;2019, 82(12): 1104-1109. shu

Influence of Carrageenan Charge on the Encapsulation Properties of Curcumin in BSA/Carrageenan Complexes

  • Corresponding author: Wang Xiaoyong, xiaoyong@ecust.edu.cn
  • Received Date: 25 June 2019
    Accepted Date: 16 August 2019

Figures(5)

  • The influence of the different negative charges of κ-carrageenan and λ-carrageenan on the encapsulation properties of curcumin in BSA/carrageenan complexes was studied. BSA/carrageenan complexes with high stability were formed through the electrostatic attraction between BSA and carrageenan. Compared to pure BSA, BSA/carrageenan complexes could significantly increase the solubility and stability of curcumin. Absorption and fluorescence measurements indicated that curcumin is bound in the hydrophobic cavities of BSA through the hydrophobic force. The presence of carrageenan can stabilize the folded structure of BSA for providing curcumin with a more hydrophobic microenvironment. Compared to pure BSA and BSA/κ-carrageenan complexes, the values of binding constant and pKa1 are bigger for curcumin with BSA/λ-carrageenan complexes, where λ-carrageenan carries higher negative charge than κ-carrageenan.
  • 加载中
    1. [1]

      A Goel, A B Kunnumakkara, B B Aggarwal. Biochem. Pharmacol., 2008, 75: 787~809. 

    2. [2]

      M Deters, H Knochenwefel, D Lindhorst et al. Pharm. Res., 2008, 25: 1822~1827. 

    3. [3]

      R C Lantz, G J Chen, A M Solyom et al. Phytomedicine, 2005, 12: 445~452. 

    4. [4]

      M X Shi, Q F Cai, L M Yao et al. Cell Biol. Int., 2006, 30: 221~226. 

    5. [5]

      A J Ruby, G Kuttan, K D Babu et al. Cancer Lett., 1995, 94: 79~83. 

    6. [6]

      P Anand, A B Kunnumakkara, R A Newman et al. Mol. Pharm., 2007, 4: 807~818. 

    7. [7]

      H H Tønnesen, J Karlsen. Z. Lebensm. Untersu. Forsch., 1985, 180: 402~404. 

    8. [8]

      Y J Wang, M H Pan, A L Cheng et al. J. Pharm. Biomed. Anal., 1997, 15: 1867~1876. 

    9. [9]

      P. Bourassa, C D Kanakis, P Tarantilis et al. J. Phys. Chem. B, 2010, 114: 3348~3354. 

    10. [10]

       

    11. [11]

      J Li, X Wang et al. Food Chem., 2015, 168: 566~571. 

    12. [12]

      C G de Kruif, F Weinbreck, R de Vries et al. Curr. Opin. Colloid Interf. Sci., 2004, 9: 340~349.

    13. [13]

       

    14. [14]

      D J McClements. Food Emulsions: Principles, Practices, and Techniques, 2nd ed.; CRC Press: Boca Raton, FL, 2004.

    15. [15]

      M Yang, Y Wu, J Li et al. J. Agric. Food. Chem., 2013, 61: 7150~7155. 

    16. [16]

      A Barik, K I Priyadarsini, H Mohan. Photochem. Photobiol., 2003, 77: 597~603. 

    17. [17]

      Z F Wang, M H M Leung, T W Kee et al. Langmuir, 2010, 26: 5520~5526. 

    18. [18]

      Y Niu, D Ke, Q Yang et al. Food Chem., 2012, 135: 1377~1382.

    19. [19]

      M Esmaili, S M Ghaffari, Z Moosavi-Movahedi et al. LWT-Food Sci. Technol., 2011, 44: 2166~2172.

    20. [20]

      S V Jovanovic, S Steenken, C W Boone et al. J. Am. Chem. Soc., 1999, 121: 9677~9681.

    21. [21]

    22. [22]

      M K Sadigh, M S Zakerhamidi, A N Shamkhali et al. J. Photoch. Photobio. A, 2017, 348: 188~198.

    23. [23]

      M Ghosh, A T K Singh, W Xu et al. Nanomedicine, 2011, 7: 162~167. 

    24. [24]

      M Bernabé-Pineda, M T Ramírez-Silva, M Romero-Romo et al. Spectrochim. Acta A, 2004, 60: 1091~1097. 

    25. [25]

      X Wang, Y Gao. Food Chem., 2018, 246: 242~248.

  • 加载中
    1. [1]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    2. [2]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    3. [3]

      Zhi Zheng Feiyang Liu Junlong Zhao . D-Amino Acids and Mirror-Image Proteins. University Chemistry, 2026, 41(2): 353-359. doi: 10.12461/PKU.DXHX202505017

    4. [4]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    5. [5]

      Ying Zhu Xiaobo Sun Cunming Yu Guangsheng Wang . Role of Virtual Experiments in Cultivating Top Innovative Talents at Beihang University: a Case of the Exploration and Design of Bioinspired Superhydrophobic Interfaces. University Chemistry, 2026, 41(2): 54-58. doi: 10.12461/PKU.DXHX202502037

    6. [6]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    7. [7]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    8. [8]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    9. [9]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    10. [10]

      Meng-Yin WangRuo-Bei HuangJian-Feng XiongJing-Hua TianJian-Feng LiZhong-Qun Tian . Critical Role and Recent Development of Separator in Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2307017-0. doi: 10.3866/PKU.WHXB202307017

    11. [11]

      Dan LUOXingcheng LIUDong LITong CHANG . Metal-support interaction effects on CO activation over Con/SiO2 catalysts. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2337-2344. doi: 10.11862/CJIC.20250003

    12. [12]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    13. [13]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    14. [14]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    15. [15]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    16. [16]

      Jia JITengqi YAOWenqian DENGWenjing SHIXuan LÜLin TIANXiaoyan XINYinling HOU . Structures, antibacterial activities, and interactions with DNA of two nickel complexes. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 78-86. doi: 10.11862/CJIC.20250141

    17. [17]

      Jiayi Yang Jianxiu Hao Huacong Zhou Quansheng Liu . “Gorgeous Transformation” of Carbon Dioxide into Cyclic Carbonates: Catalyst Types and Roles. University Chemistry, 2026, 41(2): 178-189. doi: 10.12461/PKU.DXHX202502105

    18. [18]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    19. [19]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    20. [20]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

Metrics
  • PDF Downloads(6)
  • Abstract views(1272)
  • HTML views(266)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return