Citation: Hou Junjun, Li Lianshan, Huang Jin, Tang Zhiyong. Progress in the Syntheses of Covalent Organic Frameworks and Their Applications in Separation[J]. Chemistry, ;2019, 82(3): 195-201. shu

Progress in the Syntheses of Covalent Organic Frameworks and Their Applications in Separation

Figures(3)

  • Covalent organic frameworks (COFs) are crystalline porous polymers formed by covalent bonding of small organic molecules. Unlike typical linear polymers, COFs offer fine control over their skeletons in two and three dimensions, which enables the synthesis of rigid porous structures with high regularity and tunable chemical and physical properties. The nanoscale channels and voids in COFs provide an ideal environment for molecular storage, release and separation, endowing them great potential in energy adsorption, separation, and catalysis. This article reviews the progress in COFs, including the synthesis strategies, the applications in separation field as well as outlook of their future developments.
  • 加载中
    1. [1]

      X Feng, X Ding, D Jiang. Chem. Soc. Rev., 2012, 41 (18):6010~6022. 

    2. [2]

      N Huang, P Wang, D Jiang. Nat. Rev. Mater., 2016, 1 (10):16068. 

    3. [3]

      J L Segura, M J Mancheno, F Zamora. Chem. Soc. Rev., 2016, 45 (20):5635~5671. 

    4. [4]

      M S Lohse, T Bein. Adv. Funct. Mater., 2018, 28 (33):1705553. 

    5. [5]

      A P Cote, A I Benin, N W Ockwig et al. Science, 2005, 310 (5751):1166~1170. 

    6. [6]

      H Furukawa, O M Yaghi. J. Am. Chem. Soc., 2009, 131 (25):8875~8883. 

    7. [7]

      J F Dienstmaier, D D Medina, M Dogru et al. ACS Nano, 2012, 6 (8):7234~7242. 

    8. [8]

      C Z Guan, D Wang, L J Wan. Chem. Commun., 2012, 48 (24):2943~2945. 

    9. [9]

      S Spitzer, A R Lahrood, K Macknapp et al. Chem. Commun., 2017, 53 (37):5147~5150. 

    10. [10]

      R W Tilford, S J Mugavero, P J Pellechia et al. Adv. Mater., 2008, 20 (14):2741~2746. 

    11. [11]

      G H Bertrand, V K Michaelis, T C Ong et al. PNAS, 2013, 110 (13):4923~4928. 

    12. [12]

      F J Uribe-Romo, J R Hunt, H Furukawa et al. J. Am. Chem. Soc., 2009, 131 (13):4570~4571. 

    13. [13]

      S Wan, F Gándara, A Asano et al. Chem. Mater., 2011, 23 (18):4094~4097. 

    14. [14]

      Y B Zhang, J Su, H Furukawa et al. J. Am. Chem. Soc., 2013, 135 (44):16336~16339. 

    15. [15]

      S Kandambeth, A Mallick, B Lukose et al. J. Am. Chem. Soc., 2012, 134 (48):19524~19527. 

    16. [16]

      S Kandambeth, D B Shinde, M K Panda et al. Angew. Chem. Int. Ed., 2013, 52 (49):13052~13056. 

    17. [17]

      X Chen, M Addicoat, E Jin et al. J. Am. Chem. Soc., 2015, 137 (9):3241~3247. 

    18. [18]

      H S Xu, S Y Ding, W K An et al. J. Am. Chem. Soc., 2016, 138 (36):11489~11492. 

    19. [19]

      P Kuhn, M Antonietti, A Thomas. Angew. Chem. Int. Ed., 2008, 47 (18):3450~3453. 

    20. [20]

      M J Bojdys, J Jeromenok, A Thomas et al. Adv. Mater., 2010, 22 (19):2202~2205. 

    21. [21]

      S Ren, M J Bojdys, R Dawson et al. Adv. Mater., 2012, 24 (17):2357~2361. 

    22. [22]

      X Zhu, C Tian, S M Mahurin et al. J. Am. Chem. Soc., 2012, 134 (25):10478~10484. 

    23. [23]

      F J Uribe-Romo, C J Doonan, H Furukawa et al. J. Am. Chem. Soc., 2011, 133 (30):11478~11481. 

    24. [24]

      G Das, D B Shinde, S Kandambeth et al. Chem. Commun., 2014, 50 (84):12615~12618. 

    25. [25]

      S Dalapati, S Jin, J Gao et al. J. Am. Chem. Soc., 2013, 135 (46):17310~17313. 

    26. [26]

      S B Alahakoon, C M Thompson, A X Nguyen et al. Chem. Commun., 2016, 52 (13):2843~2845. 

    27. [27]

      Q Fang, Z Zhuang, S Gu et al. Nat. Commun., 2014, 5:4503. 

    28. [28]

      Y Zeng, R Zou, Z Luo et al. J. Am. Chem. Soc., 2015, 137 (3):1020~1023. 

    29. [29]

      B Zhang, M Wei, H Mao et al. J. Am. Chem. Soc., 2018, 140 (40):12715~12719. 

    30. [30]

      M G Rabbani, A K Sekizkardes, Z Kahveci et al. Chem. Eur. J., 2013, 19 (10):3324~3328. 

    31. [31]

      Z Li, X Feng, Y Zou et al. Chem. Commun., 2014, 50 (89):13825~13828. 

    32. [32]

      Z Li, Y Zhi, X Feng et al. Chem. Eur. J., 2015, 21 (34):12079~12084. 

    33. [33]

      D Cao, J Lan, W Wang et al. Angew. Chem. Int. Ed., 2009, 48 (26):4730~4733. 

    34. [34]

      Y Li, R T Yang. AIChE J., 2008, 54 (1):269~279. 

    35. [35]

      J Dong, Y Wang, G Liu et al. CrystEngComm., 2017, 19 (33):4899~4904. 

    36. [36]

      M S Lohse, T Stassin, G Naudin et al. Chem. Mater., 2016, 28 (2):626~631. 

    37. [37]

      X Zhu, S An, Y Liu et al. AIChE J., 2017, 63 (8):3470~3478. 

    38. [38]

      S Kandambeth, B P Biswal, H D Chaudhari et al. Adv. Mater., 2017, 29 (2):1603945. 

    39. [39]

      K Dey, M Pal, K C Rout et al. J. Am. Chem. Soc., 2017, 139 (37):13083~13091. 

    40. [40]

      N Huang, L Zhai, H Xu et al. J. Am. Chem. Soc., 2017, 139 (6):2428~2434. 

    41. [41]

      Q Sun, B Aguila, J Perman et al. J. Am. Chem. Soc., 2017, 139 (7):2786~2793. 

    42. [42]

      Z Li, H Li, X Guan et al. J. Am. Chem. Soc., 2017, 139 (49):17771~17774. 

    43. [43]

      H Wang, F Jiao, F Gao et al. Talanta, 2017, 166:133~140. 

  • 加载中
    1. [1]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    2. [2]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    3. [3]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    4. [4]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    5. [5]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    6. [6]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    7. [7]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    8. [8]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    11. [11]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    12. [12]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    13. [13]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    14. [14]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    15. [15]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    16. [16]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    17. [17]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    18. [18]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    19. [19]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    20. [20]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

Metrics
  • PDF Downloads(11)
  • Abstract views(888)
  • HTML views(160)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return