Citation: SHI Qi-qi, GUO He-qin, CHEN Cong-biao, HOU Bo, JIA Li-tao, LI De-bao. Study on the performance of CF3SO3H modified sulfonic polymer-based catalyst in formaldehyde carbonylation reaction[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(7): 875-882. shu

Study on the performance of CF3SO3H modified sulfonic polymer-based catalyst in formaldehyde carbonylation reaction

  • Corresponding author: GUO He-qin, heqinguo@sxicc.ac.cn LI De-bao, dbli@sxicc.ac.cn
  • Received Date: 28 February 2020
    Revised Date: 15 June 2020

    Fund Project: the Key Research Project of Shanxi Province, China 201903D121033The project was supported by the Key Research Project of Shanxi Province, China (201903D121033)

Figures(7)

  • A sulfonic polymer-based catalyst (PDS-1.0) was synthesized by the hydrothermal and in situ sulfonation method, which is further modified by grafting with CF3SO3H, to get the PDS-1.0-F catalyst. The physical and chemical properties of the PDS-1.0 and PDS-1.0-F catalysts were characterized by N2 sorption, TG, FT-IR, 31P MAS NMR and XPS; the effect of CF3SO3H modification on the catalytic performance of PDS-1.0-F in the carbonylation of formaldehyde to glycolic acid was then investigated. The results show that after the CF3SO3H modification, the framework of PDS-1.0-F catalyst was grafted with strong electron withdrawing groups. In comparison with PDS-1.0, the CF3SO3H-modified PDS-1.0-F catalyst has a lower surface area, pore volume and concentration of acid sites, but much stronger acidity and higher thermal stability. As a result, the PDS-1.0-F catalyst exhibits excellent performance in the carbonylation of formaldehyde and over it the yield of glycolic acid reaches 91.2%.
  • 加载中
    1. [1]

      HAL J W V, LEDFORD J S, ZHANG X. Investigation of three types of catalysts for the hydration of ethylene oxide (EO) to monoethylene glycol (MEG)[J]. Catal Today, 2007,123(1/4):310-315.  

    2. [2]

      YANG Ai-min. Ethylene glycol market review and development prospect[J]. Polyester Ind, 2018,31(3):5-7. doi: 10.3969/j.issn.1008-8261.2018.03.002

    3. [3]

      SONG He-yuan, JIN Rong-hua, KANG Mei-rong, CHEN Jing. Progress in synthesis of ethylene glycol through C1 chemical industry routes[J]. Chin J Catal, 2013,34(6):1035-1050.  

    4. [4]

      CUI Jian-fang. Progress in synthesis of ethylene glycol through C1 chemical route[J]. Chem Ind, 2011,39(4):9-12. doi: 10.3969/j.issn.1005-9598.2011.04.003

    5. [5]

      JIN Li-li. Progress on synthetic technologies of ethylene glycol[J]. Coal Chem Ind, 2018,41(2):35-37.  

    6. [6]

      HUANG Y Y, MCCARTHY T J, SACHTLER W M H. Preparation and catalytic testing of mesoporous sulfated zirconium dioxide with partially tetragonal wall structure[J]. Appl Catal A:Gen, 1996,148(1):135-154. doi: 10.1016/S0926-860X(96)00223-2

    7. [7]

      OLAH G A. GKS PRAKASH, J. SOMMER. Superacids[J]. Science, 1979,206:13-20. doi: 10.1126/science.206.4414.13

    8. [8]

      GILLESPIE R J. Fluorosulfuric acid and related superacid media[J]. Acc Chem Res, 1968,1(7):202-209. doi: 10.1021/ar50007a002

    9. [9]

      HE D H, HUANG W G, LIU J Y, ZHU Q M. Condensation of formaldehyde and methyl formate to methyl glycolate and methyl methoxy acetate using heteropolyacids and their salts[J]. Catal Today, 1999,51(1):127-134. doi: 10.1016/S0920-5861(99)00014-0

    10. [10]

      HE D H, HUANG W G, LIU J Y, ZHU Q M. The activity of H4SiW12O40 for the coupling of formaldehyde and methyl formate to methyl glycolate and methyl methoxy acetate[J]. J Mol Catal A:Chem, 1999,145(1/2):335-338.  

    11. [11]

      LI T, SOUMA Y, XU Q. Carbonylation of formaldehyde catalyzed by p-toluenesulfonic acid[J]. Catal Today, 2006,111(3/4):288-291.  

    12. [12]

      LIU S P, ZHU W L, SHI L, LIU H C, NI Y M, LIL N, ZHOU H, XU S T, HE Y L, LIU Z M. Activity enhancement of Nafion resin:Vapor-phase carbonylation of dimethoxymethane over Nafion-silica composite[J]. Appl Catal A:Gen, 2015,497:153-159. doi: 10.1016/j.apcata.2015.03.010

    13. [13]

      PIROZHKOV S D, STEPANYAN A S, MYSHENKOVA T N, ORDYAN M B, LAPIDUS A L. Carbonylation of olefins and alcohols at atmospheric pressure in the presence of acid catalysts with added Ag2O or Cu2O[J]. Russ Chem Bull, 1982,31(9):1852-1858. doi: 10.1007/BF00952388

    14. [14]

      LEE S, KIM J C, LEE J S, KIM Y G. Carbonylation of formaldehyde over ion exchange resin catalysts. 1. Batch reactor studies[J]. Ind Eng Chem Res, 1993,32(2):253-259.  

    15. [15]

      MELERO J A, VAN GRIEKEN R, MORALES G. Advances in the synthesis and catalytic applications of organosulfonic-functionalized mesostructured materials[J]. Chem Rev, 2006,106(9):3790-3812. doi: 10.1021/cr050994h

    16. [16]

      LIU F J, ZHENG A M, NOSHADI I, XIAO F S. Design and synthesis of hydrophobic and stable mesoporous polymeric solid acid with ultra strong acid strength and excellent catalytic activities for biomass transformation[J]. Appl Catal B:Environ, 2013,136:193-201.  

    17. [17]

      YUAN D P, ZHAO N, WANG Y X, XUAN K, LI F, PU Y, WANG F, LI L, XIAO F K. Dehydration of sorbitol to isosorbide over hydrophobic polymer-based solid acid[J]. Appl Catal B:Environ, 2019,240:182-192. doi: 10.1016/j.apcatb.2018.08.036

    18. [18]

      BOTHE N, DOSCHER F, KLEIN J, WIDDECKE H. Thermal stability of sulphonated styrene-divinylbenzene resins[J]. Polym, 1979,20(7):850-854.  

    19. [19]

      WIDDECKE H. Polystyrene-supported acid catalysis[J]. Br Polym J, 1984,16(4):188-192. doi: 10.1002/pi.4980160406

    20. [20]

      LV H Y, ZHAO X L, LI Z D, WANG Z L, YANG X N. Fluorinated low band gap copolymer based on dithienosilole-benzothiadiazole for high-performance photovoltaic device[J]. Polym Chem, 2014,5(21):6279-6286. doi: 10.1039/C4PY00758A

    21. [21]

      SUN Q, HU K W, LENG K Y, YI X F, AGULIA B, SUN Y Y, ZHENG A M, MENG X J, MA S Q, XIAO F S. A porous Brønsted superacid as an efficient and durable solid catalyst[J]. J Mate Chem A, 2018,6(38):18712-18719. doi: 10.1039/C8TA06516K

    22. [22]

      LIU F J, KONG W P, Qi C Z, ZHU L F, XIAO F S. Design and synthesis of mesoporous polymer-based solid acid catalysts with excellent hydrophobicity and extraordinary catalytic activity[J]. ACS Catal, 2012,2(4):565-572. doi: 10.1021/cs200613p

    23. [23]

      LIU F J, MENG X G, ZHANG Y L, REN L M, NAWAZ F, XIAO F S. Efficient and stable solid acid catalysts synthesized from sulfonation of swelling mesoporous polydivinylbenzenes[J]. J Catal, 2010,271(1):52-58.  

    24. [24]

      KOLBECK C, KILLIAN M, MAIER F, PAAPE N, WASSERSCHEID P, STEINRUCK H P. Surface characterization of functionalized imidazolium-based ionic liquids[J]. Langmuir, 2008,24(17):9500-9507. doi: 10.1021/la801261h

    25. [25]

      YUAN D P, LI L, WANG Y X, WANG F, ZHAO N, XIAO F K. Solvent-free production of Isosorbide from sorbitol catalyzed by a polymeric solid acid[J]. ChemSusChem, 2019,12(22):4986-4995. doi: 10.1002/cssc.201901922

    26. [26]

      ZHANG X M, ZHAO Y P, YANG Q H. PS-SO3H@phenylenesilica with yolk-double-shell nanostructures as efficient and stable solid acid catalysts[J]. J Catal, 2014,320:180-188. doi: 10.1016/j.jcat.2014.09.018

    27. [27]

      ZHENG A M, HUANG S J, LIU S B, DENG F. Acid properties of solid acid catalysts characterized by solid-state 31P NMR of adsorbed phosphorous probe molecules[J]. Phys Chem Chem Phys, 2011,13(33):14889-14901. doi: 10.1039/c1cp20417c

    28. [28]

      TAGUSAGAWA C, TAKAGAKI A, IGUCHI A, TAKANABE K, KONDO J N, EBITANI K, HAYASHI S, TATSUMI T, DOMEN K. Highly active mesoporous Nb-W oxide solid-acid catalyst[J]. Angew Chem, 2010,49(6):1128-1132. doi: 10.1002/anie.200904791

    29. [29]

      SONG H Y, LI Z, CHEN J, XIA C G. Brönsted acidic ionic liquids as efficient and recyclable catalysts for the carbonylation of formaldehyde[J]. Catal Lett, 2012,142(1):81-86. doi: 10.1007/s10562-011-0708-x

  • 加载中
    1. [1]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    2. [2]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    3. [3]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    4. [4]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    5. [5]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    6. [6]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    7. [7]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    8. [8]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    9. [9]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    10. [10]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    11. [11]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    12. [12]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    13. [13]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    14. [14]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    15. [15]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    16. [16]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    17. [17]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    18. [18]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    19. [19]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    20. [20]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

Metrics
  • PDF Downloads(9)
  • Abstract views(1000)
  • HTML views(232)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return