Citation: Zhenli Sun, Ning Wang, Hui Chen, Xian Zhang, Juyao Zhang, Maosheng Zheng. Research Situation Analysis of Magnetic SERS Detection Technology based on CiteSpace[J]. Chemistry, ;2021, 84(6): 620-626. shu

Research Situation Analysis of Magnetic SERS Detection Technology based on CiteSpace

Figures(7)

  • Due to advantageous features such as sensitivity, specificity, ease of operation and rapidity, surface enhanced Raman spectroscopy (SERS) has emerged as one of the most promising analytical tools in recent years. Magnetic nanomaterials combined the unique properties and magnetism of noble metals together, and showed better performance as SERS substrate for detection of trace objects, so they were widely studied. Based on 805 records extracted from the WOS core database (1990-2020) in the field of SERS magnetic nanosubstrate, using literature metrological visualization tools CiteSpace software, a series of analyses were carried out. Such as the co-occurrence and cited analysis of the core authors, institutions and countries, the co-citation analysis of article, keywords and the clustering analysis of research field. The purpose of this study is to find the hot research topic and trend in the research field of SERS magnetic nano substrate technology for the detection of trace objects, and provide reference for the analysis of environmental pollutants.
  • 加载中
    1. [1]

       

    2. [2]

      Li D W, Zhai W L, Li Y T, et al. Microchim. Acta, 2014, 181(1/2): 23~43.

    3. [3]

       

    4. [4]

       

    5. [5]

      Li J F, Zhang Y J, Ding S Y, et al. Chem. Rev., 2017, 117(7): 5002~5069. 

    6. [6]

      Shan B B, Pu Y H, Chen Y F, et al. Coordin. Chem. Rev., 2018, 371: 11~37. 

    7. [7]

      Song D, Yang R, Long F, et al. J. Environ. Sci., 2019, 31(6): 16~36.

    8. [8]

      Lai H S, Xu F G, Wang L. J. Mater. Sci., 2018, 53(12): 8677~8698. 

    9. [9]

      Sun Z L, Du J J, Duan F K, et al. J. Mater. Chem. C, 2018, 6(9): 2252~2257. 

    10. [10]

      Sun Z L, Du J J, Yan L, et al. ACS Appl. Mater. Interf., 2016, 8(5): 3056~3062. 

    11. [11]

      Du J J, Xu J W, Sun Z L, et al. Anal. Chim. Acta, 2016, 915: 81~89. 

    12. [12]

      Lv B, Sun Z L, Zhang J F, et al. Colloid Surf. A, 2016: 234~240.

    13. [13]

       

    14. [14]

      Wackerlig J, Lieberzeit P A. Sensor Actuat. B, 2015, 207: 144~157. 

    15. [15]

      Hola K, Markova Z, Zoppellaro G, et al. Biotechnol. Adv., 2015, 33(6): 1162~1176. 

    16. [16]

      Thorkelsson K, Bai P, Xu T. Nano Today, 2015, 10(1): 48~66. 

    17. [17]

      Cheng Z, Choi N, Wang R, et al. ACS Nano, 2017, 11(5): 4926~4933. 

    18. [18]

      Xie Y F, Chen T, Guo Y H, et al. Food Chem., 2019, 270: 173~180. 

    19. [19]

      He D Y, Wu Z Z, Cui B, et al. Food Chem., 2019, 278: 197~202. 

    20. [20]

      Li J F, Huang Y F, Ding Y, et al. Nature, 2010, 464: 392~395. 

    21. [21]

      Wang Y Y, Yan B, Chen L X. Chem. Rev., 2013, 113(3): 1391~1428. 

    22. [22]

      Qian X M, Peng X H, Ansari D O, et al. Nat. Biotechnol., 2008, 26(1): 83~90. 

    23. [23]

      Jun B H, Noh M S, Kim J, et al. Small, 2010, 6(1): 119~125. 

    24. [24]

      Chon H, Lee S, Son S W, et al. Anal. Chem., 2009, 81(8): 3029~3034. 

    25. [25]

      Schlücker, Sebastian. Angew. Chem. Int. Ed., 2014, 53(19): 4756~4795. 

  • 加载中
    1. [1]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    2. [2]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    3. [3]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    4. [4]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    5. [5]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    6. [6]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    7. [7]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    8. [8]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    9. [9]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    10. [10]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    11. [11]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    12. [12]

      Yueyue WEIXuehua SUNHongmei CHAIWanqiao BAIYixia RENLoujun GAOGangqiang ZHANGJun ZHANG . Two Ln-Co (Ln=Eu, Sm) metal-organic frameworks: Structures, magnetism, and fluorescent sensing sulfasalazine and glutaraldehyde. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2475-2485. doi: 10.11862/CJIC.20240193

    13. [13]

      Xiaxia LIUXiaofang MALuxia GUOXianda HANSisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269

    14. [14]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    15. [15]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    16. [16]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    17. [17]

      Zhiqiang XINGJinling LIUMingmin SULei ZHANGLijun YANG . CoNi dual-single-atom catalyst for electrocatalytic H2O2 production and in situ electro-Fenton degradation of pollutants. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2479-2490. doi: 10.11862/CJIC.20250181

    18. [18]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    19. [19]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    20. [20]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

Metrics
  • PDF Downloads(22)
  • Abstract views(4134)
  • HTML views(462)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return