Citation: XU Bing, FU Jia, CHEN Huan-li, CHEN Lun-jian, XING Bao-lin. Effect of limestone on physicochemical properties of the residual chars from simulated underground gasification of lignite[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(6): 655-662. shu

Effect of limestone on physicochemical properties of the residual chars from simulated underground gasification of lignite

  • Corresponding author: XING Bao-lin, baolinxing@hpu.edu.cn
  • Received Date: 16 April 2020
    Revised Date: 21 May 2020

    Fund Project: Doctoral Foundation of Henan Polytechnic University B2019-46National Science Foundation of China U1803114the Key Scientific and Technological Project of Henan Province 202102210183Key Scientific Research Projects of Colleges and Universities of Henan Province 20A530003Research Fund of Henan Key Laboratory of Coal Green Conversion CGCF201903The project was supported by National Science Foundation of China (U1803114), the Key Scientific and Technological Project of Henan Province (202102210183), Key Scientific Research Projects of Colleges and Universities of Henan Province (20A530003), Research Fund of Henan Key Laboratory of Coal Green Conversion (CGCF201903) and Doctoral Foundation of Henan Polytechnic University (B2019-46)

Figures(6)

  • Based on the possible effect of limestone on composition and structure of coal chars during underground coal gasification (UCG), gasification of lignite by steam with different dosages of limestone of 0-30% (mass fraction) was performed in a simulated UCG test system. The composition, specific surface area (SBET) as well as pore structure properties, microcrystal structure and surface functional groups of the obtained residual chars were examined by low-temperature nitrogen adsorption, XRD and FT-IR, etc. The results show that composition of coal char is significantly influenced by limestone. Limestone contributes to development of micro-pore toward meso-pore, increases SBET and total pore volume (vt) of residual chars. When dosage of limestone increases from 0 to 30%, the SBET of residual chars increases by 21.91%, and the ratio of meso-pore volume to total pore volume rises percentage points of 21.49. XRD analysis shows that the presence of calcium destroys aromatic structure of coal char, increases both degree of disorder and interplanar spacing (d002), and inhibits graphitization tendency of coal char. FT-IR analysis indicates that hydroxyl group of residual chars is reduced with the presence of limestone.
  • 加载中
    1. [1]

      LV Qing-gang, LI Shi-yuan, HUANG Can-ran. Current situation and development suggestions of coal clean and efficient combustion technology in industry field[J]. Bull Chin Acad Sci, 2019,34(4):18-26.  

    2. [2]

      SHI Ya-wei, BAI Zhong-hua, JIANG Jun-qing, ZHANG Xiang-zhou, YANG Wen-hui, ZHAO Yu-bing, MU Jing-jing. Research status and prospect of mercury removal technology from flue gas in China[J]. Clean Coal Technol, 2014,20(2):104-108.  

    3. [3]

      LIANG Jie. Development overview of underground coal gasification technology[J]. Coal Eng, 2017,49(8):1-4.  

    4. [4]

      GE Shi-rong. Chemical mining technology for deep coal resources[J]. J China Min Technol Univ, 2017,46(4):679-691.  

    5. [5]

      BHUTTO A W, BAZMI A A, ZAHEDI G. Underground coal gasification:From fundamentals to applications[J]. Prog Energy Combust Sci, 2013,39(1):189-214.  

    6. [6]

      LIU Shu-qin, SHI Su-zhen, FENG Guo-xu, FENG Jian, LI Ming-xuan, GUO Wei. Geological site selection and evaluation for underground coal gasification[J]. J China Coal Soc, 2019,44(8):2531-2538.  

    7. [7]

      HAN Lei, QIN Yong, WANG Zuo-tang. Geological consideration for site selection of underground coal gasifier[J]. Coal Geol Explor, 2019,47(2):44-50.  

    8. [8]

      LIU Shu-qin, NIU Mao-fei, YAN Yan, JIN Xin, HE Yan, GAO Bao-ping, WANG Zhi-hai, LI Jin-gang. Exploration of radial expansion of the gasification face from underground coal gasification[J]. J China Coal Soc, 2018,43(7):2044-2051.  

    9. [9]

      XI Jian-fen. Study on the evolution rule of characteristic field in underground coal gasification process[D]. Beijing: China University of Mining & Technology (Beijing), 2016. 

    10. [10]

      SU F Q, HAMANAKA A, ITAKURA K I, ZHANG W Y, DEGUCHI G, SATO K, TAKAHASHI K, KODAMA J I. Monitoring and evaluation of simulated underground coal gasification in an ex-situ experimental artificial coal seam system[J]. Appl Energy, 2018,223:82-92.  

    11. [11]

      KAPUSTA K, STANCZYK K. Pollution of water during underground coal gasification of hard coal and lignite[J]. Fuel, 2011,90(5):1927-1934.  

    12. [12]

      IMRAN M, KUMAR D, KUMAR N, QAYYUM A, SAEED A, BHATTI M S. Environmental concerns of underground coal gasification[J]. Renewable Sustainable Energy Rev, 2014,31:600-610.  

    13. [13]

      LIU Shu-qin, NIU Mao-fei, QI Kai-li, SONG Xiao-fei, LI Jin-gang, HE Yan, WANG Zhi-hai, GAO Bao-ping. Migration behavior of typical pollutants from underground coal gasification[J]. J China Coal Soc, 2018,43(9):2618-2624.  

    14. [14]

      ZHANG Le, CHEN Lun-jian, XING Bao-lin, XU Bing, SU Yu, LI Zheng-xin. Removal of phenol from simulated wastewater by underground coal gasification semi-coke[J]. Chem Ind Eng Prog, 2015,34(10):3790-3794.  

    15. [15]

      XU B, CHEN L J, XING B L, LI Z X, ZHANG L, YI G Y, HUANG G X, MOHANTY M K. Physicochemical properties of Hebi semi-coke from underground coal gasification and its adsorption for phenol[J]. Process Saf Environ Prot, 2017,107:147-152.  

    16. [16]

      CHEN L J, LI C Q, XU B, XING B L, YI G Y, HUANG G X, ZHANG C X, LIU J W. Microbial degradation of organic pollutants in groundwater related to underground coal gasification[J]. Energy Sci Eng, 2019,7:2098-2111.  

    17. [17]

      LIANG Xin-xing, LIANG Jie, SHEN Fang. Study on the influence of coal char gasification reaction on underground coal gasification[J]. Sci Technol Innovation Herald, 2012,14:8-9.  

    18. [18]

      JIN Zhi-wei, TANG Jing-jie, ZHANG Shang-jun, WANG Zhen-zhou, YANG Hai-jing, ZHANG Kang. Gasification characteristics of large size lignite-char[J]. Clean Coal Technol, 2013,19(4):65-69+82.  

    19. [19]

      ZHAO Juan, CHEN Feng, LIU Hong-tao, WANG Yuan-yuan, YAO Kai. Study on CO2 gasification reaction features of lump coal in underground gasification process[J]. Coal Technol, 2013,41(12):132-135.  

    20. [20]

      LIANG Xin-xing, LV Jun-xin, SHU Xin-qian. Impact analysis of anthracite char structure to underground catalytic pyrolysis[J]. Coal Eng, 2018,50(1):121-123+127.  

    21. [21]

      CHEN Hong-wei, MU Xing-long, LUO Min, WANG Yuan-xin, ZHANG Zhi-yuan. Contrast research on catalytic gasification characteristics of different catalysts on Zhundong coal[J]. Coal Technol, 2016,44(4):153-158.  

    22. [22]

      MEI Yan-gang, WANG Zhi-qing, GAO Song-ping, ZHENG Hong-yan, ZHANG He, FANG Yi-tian. Research progress of the influence of alkali metals and alkaline earth metals on coal thermal chemical conversion[J]. J Fuel Chem Technol, 2020,48(4):385-394.  

    23. [23]

      LI Ling-quan, LI Han-xu, MAO Li-rui, DOU Yuan-yuan, HU Xia, ZHENG Jiu-qiang. Catalytic effects and kinetics of carbonates on coal char gasification[J]. Coal Convers, 2019,42(5):54-60.  

    24. [24]

      LI Xian-yu, GUO Qing-hua, DING Lu, YU Guang-suo. Investigation on catalytic gasification reaction characteristics of coal char with Na2CO3[J]. J Fuel Chem Technol, 2016,44(12):1422-1429.  

    25. [25]

      GAO Mei-qi, WANG Yu-long, LI Fan. Research progress in calcium catalytic action during coal gasification[J]. Chem Ind Eng Prog, 2015,34(3):715-719.  

    26. [26]

      CHEN Hong-wei, ZHAO Zhen-hu, HAN Liang, LIANG Zhan-wei. Study on gasification of coal char with CO2 catalysed by CaO[J]. J North China Electric Power Univ, 2012,39(2):93-96, 112.  

    27. [27]

      LIU Hong-tao, ZHAO Juan, WANG Yuan-yuan, YAO Hong. Experimental study on lignite catalyzed by UCG waste water[J]. Coal Convers, 2015,38(2):28-31.  

    28. [28]

      LIANG Xin-xing, LIANG Jie, SUN Chun-bao, SHEN Fang. Study on the method of catalysis on underground coal gasification[J]. Coal Convers, 2013,36(1):38-42.  

    29. [29]

      CHEN Huan-li. The physicochemical properties of semi-coke of UCG and its purification of groundwater pollution[D]. Henan Polytechnic University, 2017. 

    30. [30]

      GREGG S J, SING K S W. Adsorption Surface Area and Porosity[M]. London:Academic Press, 1991:78-82.

    31. [31]

      JIAO Y, ZHAO J H, AN W T, ZHANG L Q, SHA Y J, YANG G M, SHAO Z P, ZHU Z P, LI S D. Structurally modified coal char as a fuel for solid oxide-based carbon fuel cells with improved performance[J]. J Power Sources, 2015,288:106-114.  

    32. [32]

      ZHANG Xian-lan, CHEN Qing-ru, XU De-ping, SHI Hong-xia. Effect of pore structure and loaded metal catalyst on SO2 removal property of porous carbon part (Ⅰ):Influence of Calcium catalyst on meso-pore formation of activated carbon[J]. Coal Convers, 2004,27(4):87-90.  

    33. [33]

      HAN Yan-na, WANG Lei, YU Jiang-long, WANG Dong-mei, YIN Feng-kui. Effect of calcium on pyrolysis of lignite and reactivity of char in steam gasification[J]. J Taiyuan Technol Univ, 2013,40(3):264-267.  

    34. [34]

      LI Shao-feng, WU Shi-yong. Evolvement behavior of carbon minicrystal and pore structure of coal chars at high temperatures[J]. J Fuel Chem Technol, 2010,38(5):513-517.  

    35. [35]

      LI Yang, LIU Yang, FENG Wei, ZHAO Bin, ZHI Ke-duan, TENG Ying-yue, SONG Yin-min, HE Run-xia, ZHOU Chen-liang, LIU Quan-sheng. Influence of calcium oxide on Shengli lignite char microstructure and steam gasification performance[J]. J Fuel Chem Technol, 2015,43(9):1038-1043.  

    36. [36]

      SONIBARE O O, HAEGER T, FOLEY S F. Structural characterization of Nigerian coals by X-ray diffraction, Raman and FT-IR spectroscopy[J]. Energy, 2010,35(12):5347-5353.  

  • 加载中
    1. [1]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    2. [2]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    3. [3]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    4. [4]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    5. [5]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    6. [6]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    7. [7]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    8. [8]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    9. [9]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    10. [10]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    11. [11]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    12. [12]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    13. [13]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    14. [14]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    15. [15]

      Jingzhuo Tian Chaohong Guan Haobin Hu Enzhou Liu Dongyuan Yang . 废塑料促进S型NiCr2O4/孪晶Cd0.5Zn0.5S同质异质结光催化产氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068

    16. [16]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    17. [17]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    18. [18]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    19. [19]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    20. [20]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

Metrics
  • PDF Downloads(3)
  • Abstract views(710)
  • HTML views(64)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return