Citation: XIAO Guo-peng, QIAO Wei-jun, WANG Li-bao, ZHANG Lei, ZHANG Jian, WANG Hong-hao. Effect of calcination temperature of LaNiO3 on CuO/LaNiO3 catalyst for hydrogen production via methanol steam reforming[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(2): 213-220. shu

Effect of calcination temperature of LaNiO3 on CuO/LaNiO3 catalyst for hydrogen production via methanol steam reforming

  • Corresponding author: ZHANG Lei, lnpuzhanglei@163.com
  • Received Date: 28 October 2019
    Revised Date: 29 December 2019

    Fund Project: the National Natural Science Foundation of China 21376237Natural Science Fund in Liaoning Province 2019-MS-221Scientific research funds project of Liaoning education department L2019038The project was supported by the National Natural Science Foundation of China (21376237), Scientific research funds project of Liaoning education department (L2019038) and Natural Science Fund in Liaoning Province (2019-MS-221)

Figures(10)

  • The LaNiO3 perovskite support was synthesized by sol-gel method. The CuO/LaNiO3 catalyst was prepared by impregnation method. The catalyst was characterized by XRF, XRD, BET, H2-TPR and XPS. The effect of calcination temperature of LaNiO3 perovskite on the structure of CuO/LaNiO3 catalyst and its catalytic performance for methanol steam reforming were investigated. The results show that the calcination temperature of the support mainly affects the surface oxygen vacancy of the catalyst, the interaction between the active component and the support. When the calcination temperature of the support is 800℃, the surface of the catalyst has more oxygen vacancy, and the interaction between the active component and the support is stronger. Therefore, the hydrogenation activity of methanol steam reforming is higher.
  • 加载中
    1. [1]

      LIN L, ZHOU W, GAO R, YAO S, ZHANG X, XU W. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts[J]. Nature, 2017,544(7648):80-83. doi: 10.1038/nature21672

    2. [2]

      LIU X, MEN Y, WANG J, HE R, WANG Y. Remarkable support effect on the reactivity of Pt/In2O3/MOx catalysts for methanol steam reforming[J]. J Power Sources, 2017,364:341-350. doi: 10.1016/j.jpowsour.2017.08.043

    3. [3]

      BUTTNER W, RIVKIN C, BURGESS R, HARTMANN K, BLOOMFIELD I, BUBAR M. Hydrogen monitoring requirements in the global technical regulation on hydrogen and fuel cell vehicles[J]. Int J Hydrogen Energy, 2017,42(11):7664-7671. doi: 10.1016/j.ijhydene.2016.06.053

    4. [4]

      HAN H, MU Z, LIU Z, ZHAO F. Abating transport GHG emissions by hydrogen fuel cell vehicles:Chances for the developing world[J]. Front Energy, 2018,12(3):1-15.  

    5. [5]

      ROSES L, MANZOLINI G, CAMPANARI S, WIT E, WALTER M. Techno-economic assessment of membrane reactor technologies for pure hydrogen production for fuel cell vehicle fleets[J]. Energy Fuels, 2013,27(8):4423-4431. doi: 10.1021/ef301960e

    6. [6]

      CHOI H J, KANG M. Hydrogen production from methanol/water decomposition in a liquid photosystem using the anatase structure of Cu loaded[J]. Int J Hydrogen Energy, 2007,32(16):3841-3848. doi: 10.1016/j.ijhydene.2007.05.011

    7. [7]

      SU Shi-long, ZHANG Lei, ZHANG Yan, LEI Jun-teng, GUI Jian-zhou, LIU Dan, LIU Dan-sheng, PAN Li-wei. Thermodynamic simulation for hydrogen production in the methanol steam reforming system of kilowatt PEMFC[J]. J Petrochem Univ, 2015,28(2):19-25. doi: 10.3969/j.issn.1006-396X.2015.02.004

    8. [8]

      YANG H, CHEN Y, CUI X, WANG G, CEN Y, DENG T. A highly stable copper-based catalyst for clarifying the catalytic roles of Cu0 and Cu+ species in methanol dehydrogenation[J]. Angew Chem Int Ed, 2018,130(7):1836-1840.  

    9. [9]

      JEON N J, NOH J H, YANG W S, KIM Y C, RYU S, SEO J. Compositional engineering of perovskite materials for high-performance solar cells[J]. Nature, 2015,517(7535):476-480. doi: 10.1038/nature14133

    10. [10]

      KHALESI A, ARANDIYAN H R, PARVARI M. effects of lanthanum substitution by strontium and calcium in la-ni-al perovskite oxides in dry reforming of methane[J]. J Catal, 2008,29(10):18-26.  

    11. [11]

      YANG S Q, ZHOU F, LIU Y J, ZHANG L, YU C, WANG H H, TIAN Y, ZHANG C S, LIU D S. Morphology effect of ceria on the performance of CuO/CeO2 catalysts for hydrogen production by methanol steam reforming[J]. Int J Hydrogen Energy, 2019,44(14):7252-7261. doi: 10.1016/j.ijhydene.2019.01.254

    12. [12]

      YANG Shu-qian, HE Jian-ping, ZHANG Na, SUI Xiao-wei, ZHANG Lei, YANG Zhan-xu. Effect of rare-earth element modification on the performance of Cu/ZnAl catalysts derived from hydrotalcite precursor in methanol steam reforming[J]. J Fuel Chem Technol, 2018,46(2):179-188. doi: 10.3969/j.issn.0253-2409.2018.02.007 

    13. [13]

      HE J P, YANG Z X, ZHANG L, LI Y, PAN L W. Cu supported on ZnAl-LDHs precursor prepared by in-situ synthesis method on γ-Al2O3 as catalytic material with high catalytic activity for methanol steam reforming[J]. Int J Hydrogen Energy, 2017,42(15):9930-9937. doi: 10.1016/j.ijhydene.2017.01.229

    14. [14]

      YANG Shua-qian, ZHANG Na, HE Jian-ping, ZHANG Lei, WANG Hong-hao, BAI Jin, ZHANG Jian, LIU Dao-sheng, YANG Zhan-xu. Effect of impregnation sequence of Ce on the performance of Cu/Zn-Al catalysts derived from hydrotalcite precursor in methanol steam reforming[J]. J Fuel Chem Technol, 2018,46(4):479-488. doi: 10.3969/j.issn.0253-2409.2018.04.014 

    15. [15]

      HE Jian-ping, ZHANG Lei, CHEN Lin, YANG Zhan-xu, TONG Yu-fei. Effect of CeO2 on Cu/Zn-Al catalysts derived from hydrotalcite precursor for methanol steam reforming[J]. Chem J Chin Univ, 2017,38:1822-1828. doi: 10.7503/cjcu20170158

    16. [16]

      ZHANG L, PAN L W, NI C J, SUN T J, ZHAO S S, WANG S D, WANG A J, HU Y K. CeO2-ZrO2-promoted CuO/ZnO catalyst for methanol steam reforming[J]. Int J Hydrogen Energy, 2013,38(11):4397-4406. doi: 10.1016/j.ijhydene.2013.01.053

    17. [17]

      TANG P S, SUN H, CAO F, YANG J T, NI S L, CHEN H F. Visible-light driven LaNiO3 nanosized photocatalysts prepared by a sol-gel process[J]. Adv Mater Res, 2011,279(11):83-87.  

    18. [18]

      LI Y Y, YAO S S, WEN W, XUE L H, YAN Y W. Sol-gel combustion synthesis and visible-light-driven photocatalytic property of perovskite LaNiO3[J]. J Alloys Compd, ,491(1/2):560-564.  

    19. [19]

      MORADI G R, KHOSRAVIAN F, RAHMANZADEH M. Effects of partial substitution of Ni by Cu in LaNiO3 perovskite catalyst for dry methane reforming[J]. Chin J Catal, 2012,33(4/6):797-801.  

    20. [20]

      NIU Chun-yan, XU Zhan-lin. Study on properties of perovskite-like composite oxides La2NiO4 prepared at different roasting temperatures[J]. Bull Chin Ceram Soc, 2010,29(5):1231-1234.  

    21. [21]

      YANG Cai-hong, HAN Yi-zhuo, LI Wen-bin. Study on the carbonylation of methanol over Ni-La2O3/C catalyst[J]. J Fuel Chem Techno, 2000,28(5):392-395. doi: 10.3969/j.issn.0253-2409.2000.05.003

    22. [22]

      MICKEVIČIUS S, GREBINSKIJ S, BONDARENKA V, VENGALIS B, ORLOWSKI A. Investigation of epitaxial LaNiO3-x thin films by high-energy XPS[J]. J Alloys Compd, 2006,423(1):107-111.  

    23. [23]

      HONMA T, BENINO Y, FUJIWARA T, KOMATSU T, DIMITROV V. Electronic polarizability, optical basicity, and interaction parameter of La2O3 and related glasses[J]. J Appl Phys, 2002,91(5):2942-2950. doi: 10.1063/1.1436292

    24. [24]

      FU Z, HU J, HU W, YANG S, LUO Y. Quantitative analysis of Ni2+/Ni3+ in Li[NixMnyCoz]O2 cathode materials:Non-linear least-squares fitting of XPS spectra[J]. Appl Surf Sci, 2018,441:1048-1056. doi: 10.1016/j.apsusc.2018.02.114

    25. [25]

      GONZALEZ-DELACRUZ V M, TERNERO F, PEREIGUEZ R, CABALLERO A, HOLGADO J P. Study of nanostructured Ni/CeO2 catalysts prepared by combustion synthesis in dry reforming of methane[J]. Appl Catal A:Gen, 2010,384(1/2):1-9.  

    26. [26]

      SEIM H, MÖLSÄ H, NIEMINEN M, FJELLVG H, NIINIST L. Deposition of LaNiO3 thin films in an atomic layer epitaxy reactor[J]. J Mater Chem, 1997,7(3):449-454. doi: 10.1039/a606316k

    27. [27]

      PENG X, OMASTA T J, ROLLER J M, MUSTAIN W E. Highly active and durable Pd-Cu catalysts for oxygen reduction in alkaline exchange membrane fuel cells[J]. Front Energy, 2017,11(3):299-309.

    28. [28]

      WANG C, CHENG Q P, WANG X L, MA K, BAI X Q, TAN S R, TIAN Y, TONG D, ZHENG L R, ZHANG J, LI X G. Enhanced catalytic performance for CO preferential oxidation over CuO catalysts supported on highly defective CeO2 nanocrystals[J]. Appl Surf Sci, 2017,422(2):932-943.  

    29. [29]

      BENNICI S, GERVASINI A, RAVASIO N, ZACCHERIA F. Optimization of tailoring of CuOx species of silica alumina supported catalysts for the selective catalytic reduction of NOx[J]. J Phys Chem B, 2003,107(22):5168-5176. doi: 10.1021/jp022064x

    30. [30]

      AFONASENKO T N, TSYRULNIKOV P G, GULYAEVA T I, LEONTEVA N N, SMIRNOVA N S, KOCHUBEI D I, SUPRUN E A, SALANOV A N. (CuO-CeO2)/glass cloth catalysts for selective CO oxidation in the presence of H2:The effect of the nature of the fuel component used in their surface self-propagating high-temperature synthesis on their properties[J]. Kinet Catal, 2013,54(1):59-68.

    31. [31]

      KULKARNI G U, RAO C N R. EXAFS and XPS investigations of Cu/ZnO catalysts and their interaction with CO and methanol[J]. Top Catal, 2003,22(3):183-189.  

    32. [32]

      PEREÑÍGUEZ R, GONZÁLEZ-DELACRUZ V M, HOLGADO J P, CABALLERO A. Synthesis and characterization of a LaNiO3 perovskite as precursor for methane reforming reactions catalysts[J]. Appl Catal B:Environ, 2010,93(3):346-353.

    33. [33]

      WANG Dong-zhe, TIAN Zhi-qiang, ZHANG Xuan-jiao, FENG Xu, ZHANG Lei, BAI Jin. Effect of preparation methods on CuO/CeO2 catalysts for hydrogen production from methanol steam reforming[J]. Petro Technol, 2019,48(4):335-341. doi: 10.3969/j.issn.1000-8144.2019.04.002

    34. [34]

      QING Shao-jun, HOU Xiao-ning, LIU Ya-jie, WANG Lei, LI Lin-dong, GAO Zhi-xian. Study on Cu-Ni-Al spinel catalytic performance for hydrogen production from methanol steam reforming[J]. J Fuel Chem Technol, 2018,46(10):69-76.  

  • 加载中
    1. [1]

      Yao Ma Xin Zhao Hongxu Chen Wei Wei Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045

    2. [2]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    3. [3]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    4. [4]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    5. [5]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    6. [6]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    7. [7]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    8. [8]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    9. [9]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    10. [10]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    11. [11]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    12. [12]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    13. [13]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    14. [14]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    15. [15]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    16. [16]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    17. [17]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    18. [18]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    19. [19]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    20. [20]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

Metrics
  • PDF Downloads(5)
  • Abstract views(831)
  • HTML views(97)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return