Citation: XUE Yong-bing, HE Min, GAO Cheng-yun, LI Bing-zheng, LIU Zhen-min. Removal of benzopyrene from coal tar asphalt by chemical method[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(6): 668-674. shu

Removal of benzopyrene from coal tar asphalt by chemical method

  • Corresponding author: XUE Yong-bing, tykjdxxyb@163.com HE Min, hemin307@163.com
  • Received Date: 5 September 2018
    Revised Date: 23 March 2019

    Fund Project: the Youth Science Foundation of Shanxi Province 201601D202016Science and Technology Innovation Project from Research Institute of Highway Ministry of Transport 2018-E0001the Natural Science Foundation of Shanxi Province, China 201601D102011the Soft Science Research Program of Shanxi Province 2018041043-1The project was supported by the Natural Science Foundation of Shanxi Province, China(201601D102011), the Soft Science Research Program of Shanxi Province (2018041043-1), Science and Technology Innovation Project from Research Institute of Highway Ministry of Transport (2018-E0001), the Youth Science Foundation of Shanxi Province(201601D202016) and the Docporal Research Fund of Taiyuan University of Science and Technology (20182022)the Docporal Research Fund of Taiyuan University of Science and Technology 20182022

Figures(9)

  • For the friendly environmental application of coal tar pitch, the benzoic acid, polyethylene glycol, solid coumarone resin (S) or liquid coumarone resin (L) were selected as a modifier to lower the content of harmful benzopyrene in coal tar pitch by chemical reaction in a tube furnace. The benzopyrene content was detected by an ultraviolet-visible spectrophotometer, and the influence of reaction temperature, reaction time, modifier contents and catalyst types on the benzopyrene content was investigated. The results show that the technical condition has an intimate relationship with the decrease of benzopyrene content owing to the electrophilic substitutive reaction at the existence of acidic catalyst. All modifiers tested have obvious effects on the decrease of benzopyrene content. Under the optimum conditions, the removal rates of benzopyrene by different additives decrease in proper sequence of liquid coumarone resin, polyethylene glycol, benzoic acid and solid coumarone resin. The highest benzopyrene removal rate of 73.0% is obtained by using liquid coumarone resin, showing a promising application prospect.
  • 加载中
    1. [1]

      ZHANG L F, LIU G, WANG Y G, SHEN J, LI R F, DU J K, YANG Z F, XU Q B. Modification of coal tar pitch with P-phthalaldehyde to reduce toxic PAH content[J]. Energy Sources, Part A:Reco, Util Environ Eff, 2016,38(5):737-743. doi: 10.1080/15567036.2015.1128016

    2. [2]

      SONG Jian-wei, LI Qi-xiang, WANG Hong-liang, WANG Zhi-yong, WU Lin. Removal of 3, 4-benzopyren in coal tar pitch and mechanism research[J]. Chem Bioeng, 2014,31(10):62-65. doi: 10.3969/j.issn.1672-5425.2014.10.016

    3. [3]

      OUYOUNG C F, LI X Y, GAO Q, SH X Q. Reducing benzo (a) pyrene content of coal-tar-pitch modified by styrene-butadiene rubber through dynamic vulcanization[C]//Materials Science Forum. Trans Tech Publications, 2013, 743: 292-300.

    4. [4]

      HUANG Da-jun. Reduce of benzo[a]pyrene in coal tar pitch by reacting with polymer[D]. Dalian University of Technology, 2016. 

    5. [5]

      SUN Yu, LIAO Zhi-yuan, SU Long, ZENG Peng. Solvent effect on removal of benzo[a]pyrene in coal tar pitch[J]. Chem Ind Eng Prog, 2014(8):2211-2214.  

    6. [6]

      LIAO Zhi-yuan, SUN Yu, SU Long, ZENG Peng. Removal of benzo[a]pyrene from coal tar pitch with polyethylene glycol[J]. Fuel Chem Prog, 2014,45(4):37-39. doi: 10.3969/j.issn.1001-3709.2014.04.015

    7. [7]

      ZHANG Qing-ming, HUANG Da-jun, ZHAO Shu-chang. Decrease of benzo[a]pyrene in coal tar pitch by polymer[J]. Coal Chem Ind, 2007,35(1):58-60. doi: 10.3969/j.issn.1005-9598.2007.01.017

    8. [8]

      XUE Y B, GE Z F, LI F C, SU S, LI B Z. Modified asphalt properties by blending petroleum asphalt and coal tar pitch[J]. Fuel, 2017,207:64-70. doi: 10.1016/j.fuel.2017.06.064

    9. [9]

      WANG Wen-chao, NIU Yan-xia, LIU Gang, SHEN Jun, LI Rui-feng, DU Jian-kui, GUO Bao-rong, YANG Zhi-feng. Reducing polycyclic aromatic hydrocarbons content in coal tar pitch[J]. J Hubei Univ:Nat Sci Ed, 2015,37(4):400-406.  

    10. [10]

      ZIELIŃSKI J, OSOWIECKA B, LISZYŃSKA B, CIESINSKA W, POLACZEK J. Benzo[a]pyrene in coal tar pitch:Chemical conversion in situ by alky lation[J]. Fuel, 1996,75(13):1543-1548. doi: 10.1016/0016-2361(96)00115-9

    11. [11]

      HE D M, GUAN J, WU D, ZHAO S C, ZHANG Q M. Modification of coal tar pitch to reduce the carcinogenic polycyclic aromatic hydrocarbons[C]. Applied Mechanics and Materials. Trans Tech Publications, 2013, 295: 3098-3103.

    12. [12]

      KAVSHIK S, RAINA R K, BHATIA G, VERMA G L, KHANDAL R K. Modification of coal tar pitch by chemical method to reduce benzo (a) pyrene[J]. Curr Sci, 2007,93(25):540-544.

    13. [13]

      WANG W, LIU G, SHEN J, CHANG H H, LI R F, DU J K, YANG Z F, XU Q B. Reducing polycyclic aromatic hydrocarbons content in coal tar pitch by potassium permanganate oxidation and solvent extraction[J]. J Environ Chem Eng, 2015,3(3):1513-1521. doi: 10.1016/j.jece.2015.05.024

  • 加载中
    1. [1]

      Yuanyuan JIANGFangfang TUYuhong ZHANGShi CHENJiayuan XIANGXinhui XIA . Preparation and electrochemical properties of high-stability cathode prelithiation additive. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1101-1111. doi: 10.11862/CJIC.20240441

    2. [2]

      Minwei Xie . Integrating Ideological and Political Education into Inorganic Chemistry: a Case on “Weak Acid Dissociation Equilibrium” in Environmental Science and Engineering. University Chemistry, 2025, 40(11): 24-30. doi: 10.12461/PKU.DXHX202412143

    3. [3]

      Zongyuan Chen ChunSheng Shi Yiwen Li Ganlin Zu Qiang Jin Haishan Wang Fujun Wang Dekun Yan Zhijun Guo Wangsuo Wu . Measurement of Uranium Isotopes in Environmental Water Samples by Alpha-Spectroscopy: Design of an Undergraduate Radiochemistry Experiment. University Chemistry, 2025, 40(4): 353-358. doi: 10.12461/PKU.DXHX202406103

    4. [4]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    5. [5]

      Wen Zhou Hui Zhou Chen Xie Quli Fan . Exploration of a Dual-Line P-BOPPPS-E Teaching Approach Guided by Curriculum-Based Ideological and Political Education in Physical Chemistry. University Chemistry, 2025, 40(11): 92-99. doi: 10.12461/PKU.DXHX202412056

    6. [6]

      Nana Wang Gaosheng Zhang Huosheng Li Tangfu Xiao . Discussion on the Teaching Reform of Environmental Functional Materials within the Context of “Double First-Class” Initiative: Emphasizing the Integration of Industry, Academia, Research, and Application. University Chemistry, 2024, 39(6): 137-144. doi: 10.3866/PKU.DXHX202312010

    7. [7]

      Chi Zhang Suqi Wu An Liu Wei Zhang Xiao Wei . Application of Team-Based Learning Teaching Method in Inorganic Chemistry Course: the Design Case of Inorganic Chemistry Teaching in Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 89-95. doi: 10.12461/PKU.DXHX202409135

    8. [8]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    9. [9]

      Qizhi Yao Gu Jin Pingping Zhu . Modular Analytical Chemistry Experimental Teaching Based on “Comprehensive + Exploratory” Experiments: “One Student, One Plan”, Individualized Experimental Teaching Method. University Chemistry, 2024, 39(3): 143-148. doi: 10.3866/PKU.DXHX202309071

    10. [10]

      Yinuo Wu Jiantao Ye Xie Zhou Yu Qian Lei Guo . Teaching Design of Basic Chemistry Based on PBL Methodology for Medical Undergraduates: A Case Study on “Osmotic Pressure of Solution”. University Chemistry, 2024, 39(3): 149-157. doi: 10.3866/PKU.DXHX202309077

    11. [11]

      Shengyan Yang Xiangzhen Meng Xin Wang Yang Zhang . Construction and Exploration of an Online-Offline Blended “Eight-Link” Teaching Method for Physical Chemistry Experiments Based on OBE Concept. University Chemistry, 2024, 39(11): 28-37. doi: 10.3866/PKU.DXHX202402019

    12. [12]

      Wenhui LiYakun TangYusheng ZhouYue ZhangWenhai ZhangQingtao MaLang LiuSen DongYuliang Cao . Enhanced sodium storage performance of asphalt-derived hard carbon through intramolecular oxidation for high-performance sodium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(10): 100119-0. doi: 10.1016/j.actphy.2025.100119

    13. [13]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Application of Comparative Pedagogy in Instrumental Analysis Experiment Teaching. University Chemistry, 2024, 39(3): 266-273. doi: 10.3866/PKU.DXHX202309068

    14. [14]

      Qun Jing Xiuhua Cui Xu Ji Yi Jiang . Application of Research Case-Based Teaching Method in the Computational Materials Science Course. University Chemistry, 2025, 40(11): 175-183. doi: 10.12461/PKU.DXHX202505050

    15. [15]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    16. [16]

      Jingming Li Bowen Ding Nan Li Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078

    17. [17]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

    18. [18]

      Yingxian Wang Tianye Su Limiao Shen Jinping Gao Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015

    19. [19]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    20. [20]

      Xu Liu Chengfang Liu Jie Huang Xiangchun Li Wenyong Lai . Research on the Application of Diversified Teaching Models in the Teaching of Physical Chemistry. University Chemistry, 2024, 39(8): 112-118. doi: 10.3866/PKU.DXHX202402021

Metrics
  • PDF Downloads(8)
  • Abstract views(1851)
  • HTML views(146)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return