Citation: DUAN Yan-kang, SONG Zhong-xian, ZHANG Qiu-lin, LIU Qi-xian, ZHANG Jin-hui, ZHANG Teng-fei, SUN Er-bo. Effect of acid property on selective catalytic reduction of NO with ammonia over photungstic acid modified CeO2 catalyst[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(10): 1259-1265. shu

Effect of acid property on selective catalytic reduction of NO with ammonia over photungstic acid modified CeO2 catalyst

Figures(9)

  • A series of CeO2 catalysts was modified with different acids including phosphotungstic acid (P-W), phosphate acid (P), partial ammonium tungstate (W), and phosphate acid plus partial ammonium tungstate (P+W); the effect of acid modification on the performance of CeO2 catalyst in the selective catalytic reduction of NO with ammonia (NH3-SCR) was then investigated. The results indicated that the CeO2 catalyst after acid modification possesses abundant surface acid sites of weak-medium strength and the acid quantity of various catalysts follows the order of P-W/CeO2 >W/CeO2 >P+W/CeO2 >P/CeO2. Due to the interaction between P and W species, the P-W/CeO2 catalyst modified with phosphotungstic acid exhibits high amount of weak-medium surface acid sites and active Ce and O species, which may promote the adsorption and activation of NH3 and then enhance its catalytic activity in the NH3-SCR of NO; over the P-W/CeO2 catalyst, the conversion of NO keeps above 90% at 225-450℃.
  • 加载中
    1. [1]

      LEI Z G, WEN C P, CHEN B H. Optimization of internals for selective catalytic reduction (SCR) for NO removal[J]. Environ Sci Technol, 2011,45(8):3437-3744. doi: 10.1021/es104156j

    2. [2]

      KATHLEEN, TAYLOR. Nitric oxide catalysis in automotive exhaust systems[J]. Catal Rev, 1993,35(4):457-481. doi: 10.1080/01614949308013915

    3. [3]

      KONG Zhi-jian, WANG Cheng, DING Zheng-nan, CHEN Yin-fei, ZHANG Ze-kai. Li-modified MnO2 catalyst and LiMn2O4 for selective catalytic reduction of NO with NH3[J]. J Fuel Chem Technol, 2014,42(12):1447-1454. doi: 10.1016/S1872-5813(15)60002-0

    4. [4]

      SHEN Bo-xiong, MA Juan. Alkali-resistant performance of V2O5-WO3/TiO2 catalyst modified by SiO2[J]. J Fuel Chem Technol, 2012,40(2):247-251.  

    5. [5]

      JIN R B, LIU Y, WU Z B, WANG H Q, GU T T. Low-temperature selective catalytic reduction of NO with NH3 over Mn-Ce oxides supported on TiO2 and Al2O3:A comparative study[J]. Chemosphere, 2010,78(9):1160-1166. doi: 10.1016/j.chemosphere.2009.11.049

    6. [6]

      CHEN L, LI J H, GE M F. DRIFT Study on cerium-tungsten/titiania catalyst for selective catalytic reduction of NOx with NH3[J]. Environ Sci Technol, 2010,44(24):9590-9596. doi: 10.1021/es102692b

    7. [7]

      SHEN Y S, ZHU S M, QIU T, SHEN S B. Preparation of Ti-Zr-V-O catalytic composite material and its selective catalytic reduction of NO[J]. J Inorg Mater, 2009,24(3):457-462. doi: 10.3724/SP.J.1077.2009.00457

    8. [8]

      SHAN W P, LIU F D, HE H, SHI X Y, ZHANG C B. An environmentally-benign CeO2-TiO2 catalyst for the selective catalytic reduction of NOx with NH3 in simulated diesel exhaust[J]. Catal Today, 2012,184(1):160-165. doi: 10.1016/j.cattod.2011.11.013

    9. [9]

      LIU Qing-ya, LIU Zhen-yu, LI Cheng-yue. adsorption and activation of nh3 during selective catalytic reduction of NO by NH3[J]. Chin J Catal, 2006,27(7):636-646. doi: 10.1016/S1872-2067(06)60035-1

    10. [10]

      SHAN W, LIU F, HE H, SHI X, ZHANG C. Novel cerium-tungsten mixed oxide catalyst for the selective catalytic reduction of NOx with NH3[J]. Chem Commun, 2011,47(28):8046-8048. doi: 10.1039/c1cc12168e

    11. [11]

      LI Fei, XIAO De-hai, ZHANG Yi-bo, WANG De-qiang, PAN Xi-qiang, YANG Xiang-guang. A novel Ce-P-O catalyst for the selective catalytic reduction of NO with NH3[J]. Chin J Catal, 2010,31(8):938-942. doi: 10.1016/S1872-2067(09)60093-0

    12. [12]

      SI Z C, WENG D, WU X D, JIANG Y. Roles of Lewis and Brønsted acid sites in NO reduction with ammonia on CeO2-ZrO2-NiO-SO2-4 catalyst[J]. J Rare Earth, 2010,28(5):727-731. doi: 10.1016/S1002-0721(09)60189-7

    13. [13]

      ZHANG Q L, SONG Z X, NING P, LIU X, LI H, GU J J. Novel promoting effect of acid modification on selective catalytic reduction of NO with ammonia over CeO2 catalyst[J]. Catal Commun, 2015,59:170-174. doi: 10.1016/j.catcom.2014.10.007

    14. [14]

      YI Ting, ZHANG Yi-bo, LI Jin-wei, YANG Xiang-guang. Promotional effect of H3PO4 on ceria catalyst for selective catalytic reduction of NO by NH3[J]. Chin J Catal, 2016,37(2):300-307. doi: 10.1016/S1872-2067(15)60977-9

    15. [15]

      SONG Z X, NING P, ZHANG Q L, LIU X, ZHANG J H, WANG Y C, DUAN Y K, HUANG Z Z. The role of surface properties of silicotungstic acid doped CeO2 for Selective catalytic reduction of NOx by NH3:Effect of precipitant[J]. J Mol Catal A:Chem, 2015,413:15-23.

    16. [16]

      MHAMDI M, KHADDAR-ZINE S, GHORBEL A. Influence of the cobalt salt precursors on the cobalt speciation and catalytic properties of H-ZSM-5 modified with cobalt by solid-state ion exchange reaction[J]. Appl Catal A:Gen, 2009,357(1):42-50. doi: 10.1016/j.apcata.2008.12.036

    17. [17]

      LI X, LI Y. Molybdenum modified CeAlOx catalyst for the selective catalytic reduction of NO with NH3[J]. Evol Dev, 2014,386(1):69-77.

    18. [18]

      GAO S, WANG P L, CHEN X B, WANG H Q, WU Z B, LIU Y, WENG X L. Enhanced alkali resistance of CeO2/SO2-4-ZrO2 catalyst in selective catalytic reduction of NOx by ammonia[J]. Catal Commun, 2014,43(2):223-226.

    19. [19]

      ZHU Z, YANG W. Preparation, Characterization and shape-selective catalysis of supported heteropolyacid salts K2.5H0.5PW12O40, (NH4)2.5H0.5PW12O40, and Ce0.83H0.5PW12O40 on MCM-41 mesoporous silica[J]. J Phys Chem C, 2009,113(39):17025-17031. doi: 10.1021/jp9047727

    20. [20]

      CSABA J, NORMA R D T, CHANMANEET W, KRISHNAN R. Bringing conjugated polymers and oxide nanoarchitectures into intimate contact:Light-induced electrodeposition of polypyrrole and polyaniline on nanoporous WO3 or TiO2 nanotube array[J]. J Phys Chem C, 2012,116(36):19145-19155. doi: 10.1021/jp305181h

    21. [21]

      FAN J, WU X D, WU X D, LIANG Q, RAN R, WE NG. Thermal ageing of Pt on low-surface-area CeO2-ZrO2-La2O3 mixed oxides:Effect on the OSC performance[J]. Appl Catal B:Environ, 2008,81(1):38-48.

    22. [22]

      SONG Z X, NING P, ZHANG Q L, LIU X, ZHANG J H, WANG Y C, DUAN Y K, HUANG Z Z. The role of surface properties of silicotungstic acid doped CeO2 for selective catalytic reduction of NOx by NH3:Effect of precipitant[J]. J Mol Catal A:Chem, 2016,413:15-23. doi: 10.1016/j.molcata.2015.12.009

    23. [23]

      ZHANG Q L, SONG Z X, NING P, LIU X, LI H, GU J J. Novel promoting effect of acid modification on selective catalytic reduction of NO with ammonia over CeO2 catalyst[J]. Catal Commun, 2015,59:170-174. doi: 10.1016/j.catcom.2014.10.007

    24. [24]

      KNOZINGER H, RATNASAMY P. Catalytic aluminas:Surface models and characterization of surface sites[J]. Catal Rev, 1978,17:31-70. doi: 10.1080/03602457808080878

    25. [25]

      WU Z, JIN R, LIU Y, WANG H. Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature[J]. Catal Commun, 2008,9(13):2217-2220. doi: 10.1016/j.catcom.2008.05.001

    26. [26]

      ZHANG R, ZHONG Q, ZHAO W, YU L, QU H. Promotional effect of fluorine on the selective catalytic reduction of NO with NH3 over CeO2-TiO2 catalyst at low temperature[J]. Appl Surf Sci, 2014,289:237-244. doi: 10.1016/j.apsusc.2013.10.143

    27. [27]

      ZHANG H N, CHEN H H, WANG Q P, ZHANG X Y, CHANG J, GAO L, SHEN H B, CONG Z H, LIU Z J. Graphene-based passively Q-switched Nd:KLu (WO4)2 eye-safe laser operating at 1425nm[J]. Appl Catal B:Environ, 2013,114(3):1-5.

    28. [28]

      GUO R T, ZHOU Y, PAN W J, HONG J N, ZHEN W L, JIN Q, DING C G, GUO S Y. Effect of preparation methods on the performance of CeO2/Al2O3 catalysts for selective catalytic reduction of NO with NH3[J]. J Ind Eng Chem, 2013,19(6):2022-2025. doi: 10.1016/j.jiec.2013.03.010

  • 加载中
    1. [1]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    2. [2]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    3. [3]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    4. [4]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    5. [5]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    6. [6]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    7. [7]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    8. [8]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    9. [9]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    10. [10]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    11. [11]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    12. [12]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    15. [15]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    16. [16]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    17. [17]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    18. [18]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    19. [19]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    20. [20]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

Metrics
  • PDF Downloads(0)
  • Abstract views(621)
  • HTML views(112)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return