Citation: Li Peiwen, Gao Juanjuan, Zhang Xumei, Zhang Shupeng. Rational Design of Core-Shell Electrode Materials for Oxygen Reduction Reaction in Fuel Cell[J]. Chemistry, ;2018, 81(11): 963-971. shu

Rational Design of Core-Shell Electrode Materials for Oxygen Reduction Reaction in Fuel Cell

  • Corresponding author: Zhang Shupeng, shupeng_2006@126.com
  • Received Date: 17 June 2018
    Accepted Date: 18 August 2018

Figures(4)

  • The rapid development of nanotechnology has promoted the production of core-shell nanoparticles as a new type of functional material. By rationally designing the core and shell composition, a series of core-shell nanomaterials with functional tunability can be constructed. The material can be used as a cathode electrode for oxygen reduction reaction (ORR) in fuel cells and exhibits excellent electrocatalytic performance. Based on the classification of different chemical properties of core and shell, this article reviews the application of core-shell electrode materials in ORR in recent years and proposes some existing challenges in order to provide ideas for current solutions to energy conversion and storage problems.
  • 加载中
    1. [1]

      J Cherusseri, K K Kar. J. Mater. Chem. A, 2015, 3:21586~21598. 

    2. [2]

      F Bonaccorso, L G Colobmo, G H Yu et al. Science, 2015, 347(6217):1246501~1246509. 

    3. [3]

       

    4. [4]

      M Borghei, J Lehtonen, L Liu et al. Adv. Mater., 2017, 30:1703691~1703717.

    5. [5]

      L Gan, C H Cui, S Rudi et al. Top. Catal., 2014, 57(1/4):236~244.

    6. [6]

      J Greeley, I E L Stephens, A S Bondarenko et al. Nat. Chem., 2009, 1(7):552~556. 

    7. [7]

      J P Lai, S J Guo. Small, 2017, 13(48):1702156~1702170. 

    8. [8]

       

    9. [9]

       

    10. [10]

       

    11. [11]

      M Mukherjee, M Samanta, U K Ghorai et al. Appl. Surf. Sci., 2018, 449:144~151. 

    12. [12]

      D Guo, H Wei, X Chen et al. J. Mater. Chem. A, 2017, 5(34):18193~18206. 

    13. [13]

      L Gan, S Rudi, C H Cui et al. Small, 2016, 12(23):3189~3196. 

    14. [14]

      Y C Fan, S Ida, A Staykov et al. Small, 2017, 13(25):1700099~1700106. 

    15. [15]

      L Z Bu, J B Ding, S J Guo et al. Adv. Mater., 2015, 27(44):7204~7212. 

    16. [16]

      I S Amiinu, X B Liu, Z H Pu et al. Adv. Funct. Mater., 2018, 28(5):1704638~1704646. 

    17. [17]

      Z J Wang, B Li, X M Ge et al. Small, 2016, 12(19):2580~2587. 

    18. [18]

      J F Li, Y J Zhang, S Y Ding et al. Chem. Rev., 2017, 117(7):5002~5069. 

    19. [19]

      R G Chaudhur, S Paria. Chem. Rev., 2012, 112(4):2373~2433. 

    20. [20]

      L B Jiang, X Z Yuan, J Liang et al. J. Power Sources, 2016, 331:408~425. 

    21. [21]

       

    22. [22]

      L Adijanto, D A Bennett, C Chen et al. Nano Lett., 2013, 13(5):2252~2257. 

    23. [23]

      M B Gawande, A Goswami, T Asefa et al. Chem. Soc. Rev., 2015, 44(21):7540~7590. 

    24. [24]

      P Strasser, S Kühl. Nano Energy, 2016, 29:166~177. 

    25. [25]

      P Raghavendra, G V Reddy, R Sivasubramanian et al. Int. J. Hydrogen Energy, 2017, 43(8):4125~4135. 

    26. [26]

      R Liu, R D Priestley. J. Mater. Chem. A, 2016, 4(18), 6680~6692.

    27. [27]

      A M El-Toni, M A Habila, J P Labis et al. Nanoscale, 2016, 8(5):2510~2531. 

    28. [28]

      S F Fu, C Z Zhu, J H Song et al. J. Mater. Chem. A, 2017, 7(19):1700363~1700381.

    29. [29]

      J B Wu, H Yang. Acc. Chem. Res., 2013, 46(8):1848~1857. 

    30. [30]

      M Borghei, N Laocharoen, E Kibena-Põldsepp et al. Appl. Catal. B., 2017, 204:394~402. 

    31. [31]

      Y J Wang, W Y Long, L L Wang et al. Energy Environ. Sci., 2018, 11:258~275. 

    32. [32]

      J T Zhang, L M Dai. ACS Catal., 2015, 5(12):21~28. 

    33. [33]

      V Goellner, V Armel, A Zitolo et al. J. Electrochem. Soc., 2015, 162(6):403~414. 

    34. [34]

      S Sui, X Y Wang, X T Zhou et al. J. Mater. Chem. A, 2016, 5(5):1808~1825. 

    35. [35]

      R M Félix-Navarro, M Beltrán-Gastélum, E A Reynoso-Soto et al. Renew. Energy, 2016, 87:31~41. 

    36. [36]

      A A Gewirth, J A Varnell, A M Diascro. Chem. Rev., 2018, 118(5):2313~2339. 

    37. [37]

      M Markiewicz, C Zalitis, A Kucernak. Electrochim. Acta, 2015, 179:126~136. 

    38. [38]

      H Osgood, S V Devaguptapu, H Xu et al. Nano Today, 2016, 11(5):601~625. 

    39. [39]

      J Stacy, Y N Regmi, B Leonard et al. Renew. Sustain. Energy Rev., 2017, 69:401~414. 

    40. [40]

      C Z Zhu, H Li, S F Fu et al. Chem. Soc. Rev., 2016, 47(13):517~531.

    41. [41]

      R G Chaudhuri, S Paria. Chem. Rev., 2012, 112(4):2373~2433. 

    42. [42]

       

    43. [43]

      K Qi, W T Zheng, X Q Cui. Nanoscale, 2015, 8(3):1698~1703.

    44. [44]

      J Y Cao, M W Guo, J Y Wu et al. J. Power Sources, 2015, 277:155~160. 

    45. [45]

      Y Q Guo, K Xu, C Z Wu et al. Chem. Soc. Rev., 2015, 44(3):637~646. 

    46. [46]

      D Takimoto, T Ohnishi, J Nutariya et al. J. Catal., 2017, 345:207~215. 

    47. [47]

       

    48. [48]

      S Liu, Z Yang, M Li et al. Electrochim. Acta, 2018, 265:221~231. 

    49. [49]

      A Sarapuu, E Kibenapõldsepp, M Borghei et al. J. Mater. Chem. A, 2018, 6:776~804. 

    50. [50]

      Y Z Chen, Q Xu, S H Yu et al. Small, 2015, 11(1):71~76. 

    51. [51]

      S Q Ci, S Mao, Y Hou et al. J. Mater. Chem. A, 2015, 3(15):7986~7993. 

    52. [52]

      W Xia, R Q Zou, L An et al. Energy Environ. Sci., 2015, 8(2):568~576. 

    53. [53]

      J Jiang, H Gao, S Lu et al. J. Mater. Chem. A, 2017, 5(19):9233~9240. 

    54. [54]

      L K Wang, Z H Tang, W Yan et al. J. Power Sources, 2017, 343:458~466. 

    55. [55]

      H C Tsai, Y C Hsieh, T H Yu et al. ACS Catal., 2015, 5(3):1568~1580. 

    56. [56]

      S Diodati, E Negro, K Vezzù et al. Electrochim. Acta, 2016, 215:398~409. 

    57. [57]

      C H Si, Z Jie, W Ying et al. ACS Appl. Mater. Interf., 2017, 9(3):2485~2494. 

    58. [58]

      A Aijaz, J Masa, C Rösler et al. Angew. Chem. Int. Ed., 2016, 55(12):4087~4091. 

    59. [59]

      D Y Xu, C P Mu, B C Wang et al. Sci. China Mater., 2017, 60(10) 1~8.

    60. [60]

      S S Sun, Y J Xue, Q Wang et al. Chem. Commun., 2017, 53(56):7921~7924. 

    61. [61]

      S Ghosh, K Biswas, C N R Rao. J. Mater. Chem., 2007, 17(23):2412~2417. 

    62. [62]

      Y Cheng, S Dou, M Saunders et al. J. Mater. Chem. A, 2016, 4(36):13881~13889. 

    63. [63]

      Y Cheng, S Dou, J P Veder et al. ACS Appl. Mater. Interf., 2017, 9(9):8121~8133. 

    64. [64]

      Y X Ye, L Kuai, B Y Geng. J. Mater. Chem., 2012, 22(2):19132~19138. 

    65. [65]

      R Gao, Z Z Yang, L R Zheng et al. ACS Catal., 2018, 8(3):1955~1963. 

    66. [66]

      G J Liu, B Wang, L Wang et al. RSC Adv., 2016, 6(59) 54076~54086.

    67. [67]

      J Du, T Zhang, J L Xing et al. J. Mater. Chem. A, 2017, 5(19):9210~9216. 

    68. [68]

      Y B Yan, K X Li, X P Chen et al. Small, 2017, 13(47):1701724~1701731. 

    69. [69]

       

    70. [70]

      Y X Zeng, Y Han, Y T Zhao et al. Adv. Energy Mater., 2015, 5(12):1402176~1402182. 

    71. [71]

      J K He, M C Wang, W B Wang et al. ACS Appl. Mater. Interf., 2017, 9(49):42676~42687. 

    72. [72]

      Q J Niu, J X Guo, B L Chen et al. Carbon, 2017, 114:250~260. 

    73. [73]

      F M Wang, X Y Zhan, Z Z Cheng et al. Small, 2015, 11(6):749~755. 

    74. [74]

      X F Lu, X Y Chen, Z Wen et al. ACS Appl. Mater. Interf., 2015, 7(27):14843~14850. 

    75. [75]

      H H Zhou, G Y Han, D Y Fu et al. J. Power Sources, 2014, 272:203~210. 

    76. [76]

      C Q Dai, Y Yang, Z Zhao et al. Nanoscale, 2017, 9(26):8945~8951. 

    77. [77]

      L Z Bu, Q Shao, B E et al. J. Am. Chem. Soc., 2017, 139(28):9576~9582. 

    78. [78]

      A P Periasamy, R Ravindranath, P Roy et al. J. Mater. Chem. A, 2016, 4(33):12987~12994. 

  • 加载中
    1. [1]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    2. [2]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    3. [3]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    4. [4]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    5. [5]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    6. [6]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    7. [7]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    8. [8]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    9. [9]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    10. [10]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    11. [11]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    12. [12]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    13. [13]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    14. [14]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    15. [15]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    18. [18]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    19. [19]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    20. [20]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

Metrics
  • PDF Downloads(3)
  • Abstract views(263)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return