Citation: Hu Yaqi, Lu Xiaoquan. Research Progress in Visual Analysis Based on Gold Nanoparticles[J]. Chemistry, ;2019, 82(12): 1059-1066. shu

Research Progress in Visual Analysis Based on Gold Nanoparticles

  • Received Date: 11 June 2019
    Accepted Date: 30 September 2019

Figures(5)

  • The visual analysis based on surface plasmon resonance (SPR) of gold nanoparticles has been applied for the detection of numerous analytes owing to high sensitivity, good designability, and fast analytical process. Thus, the detection method has great application potential. In this paper, the research progress in visual analysis based on the SPR of gold nanoparticles is reviewed, and its development trend is prospected.
  • 加载中
    1. [1]

      K C Grabar, K J Allison, B E Baker et al. Langmuir, 1996, 12: 2353~2361. 

    2. [2]

      J Griffin, A K Singh, D Senapati et al. Chem. Eur. J., 2009, 15: 342~351. 

    3. [3]

      B D Busbee, S O Obare, C J Murphy. Adv. Mater., 2003, 15: 414~416. 

    4. [4]

      N R Jana, L Gearheart, C J Murphy. J. Phys. Chem. B, 2001, 105: 4065~4067. 

    5. [5]

      J Turkevich, P C Stevenson, J Hillier. Discuss. Faraday Soc., 1951, 55~75. 

    6. [6]

      G Frens. Nat. Phys. Sci., 1973, 241: 20~22. 

    7. [7]

      G Schmid, R Pfeil, R Boese et al. Chem. Ber., 1981, 114: 3634~3642. 

    8. [8]

      Y Lu, W Chen. Chem. Soc. Rev., 2012, 41: 3594~3623. 

    9. [9]

      W W Weare, S M Reed, M G Warner et al. J. Am. Chem. Soc., 2000, 122: 12890~12891. 

    10. [10]

      D V Leff, L Brandt, J R Heath. Langmuir, 1996, 12: 4723~4730. 

    11. [11]

      T K Sau, A Pal, N R Jana et al. J. Nanopart. Res., 2001, 3: 257~261. 

    12. [12]

      K Okitsu, M Ashokkumar, F Grieser. J. Phys. Chem. B, 2005, 109: 20673~20675. 

    13. [13]

      R Cao, B Li. Chem. Commun., 2011, 47: 2865~2867. 

    14. [14]

      C J Yu, W L Tseng. Langmuir, 2008, 24: 12717~12722. 

    15. [15]

      S Y Park, A K Lytton-Jean, B Lee et al. Nature, 2008, 451: 553~556. 

    16. [16]

      W Xu, X Xue, T Li et al. Angew. Chem. Int. Ed., 2009, 48: 6849~6852. 

    17. [17]

      D Liu, W Chen, J Wei et al. Anal. Chem., 2012, 84: 4185~4191. 

    18. [18]

      K Zhu, Y Zhang, S He et al. Anal. Chem., 2012, 84: 4267~4270. 

    19. [19]

      C Lai, L Qin, G Zeng et al. RSC Adv., 2016, 6: 3259~3266. 

    20. [20]

      Y Liu, X Wang. Anal. Methods, 2013, 5: 1442~1448. 

    21. [21]

      S S Memon, A Nafady, A R Solangi et al. Sens. Actuat. B, 2018, 259: 1006~1012. 

    22. [22]

      G Zhou, Y Liu, M Luo et al. ACS Appl. Mater. Interf., 2012, 4: 5010~5015. 

    23. [23]

      Q Qian, J Deng, D Wang et al. Anal. Chem., 2012, 84: 9579~9584. 

    24. [24]

      S Wang, S Gao, S Sun et al. RSC Adv., 2016, 6: 45645~45651. 

    25. [25]

      L Liu, X Wang, J Yang et al. Anal. Biochem., 2017, 535: 19~24. 

    26. [26]

      A V Skinner, S Han, R Balasubramanian. Sens. Actuat. B, 2017, 247, 706~712. 

    27. [27]

      N Gao, P Huang, F Wu. Spectrochim. Acta A, 2018, 192: 174~180. 

    28. [28]

      T Simon, M Shellaiah, P Steffi et al. Anal. Chim. Acta, 2018, 1023: 96~104. 

    29. [29]

      S Sankoh, C Thammakhet, A Numnuam et al. Biosens. Bioelectron., 2016, 85: 743~750. 

    30. [30]

      X Mao, Y Li, P Han et al. Sens. Actuat. B, 2018, 267: 336~341. 

    31. [31]

      S Diamai, W Warjri, D Saha et al. Colloids Surf. A, 2018, 538: 593~599. 

    32. [32]

      S A Khan, J A DeGrasse, B J Yakes et al. Anal. Chim. Acta, 2015, 892: 167~174. 

    33. [33]

      J Wang, Z L Wu, H Z Zhang et al. Talanta, 2017, 167: 193~200. 

    34. [34]

      S Kong, M Liao, Y Gu et al. Spectrochim. Acta A, 2016, 157: 244~250. 

    35. [35]

      X Liu, Y Wang, P Chen et al. Anal. Chem., 2014, 86: 2345~2352. 

    36. [36]

      J Feng, Q Shen, J Wu et al. Food Control, 2019, 98: 333~341. 

    37. [37]

      J H Soh, Y Lin, S Rana et al. Anal. Chem., 2015, 87: 7644~7652. 

    38. [38]

      Z Zhang, Z Chen, S Wang et al. ACS Appl. Mater. Interf., 2014, 6: 6300~6307. 

    39. [39]

      Y Tian, Y Wang, Z Sheng et al. Anal. Biochem., 2016, 513: 87~92. 

    40. [40]

      L Yang, X Zhang, H Li et al. Anal. Methods, 2017, 9: 6139~6147. 

    41. [41]

      N R Nirala, P S Saxena, A Srivastava. Spectrochim. Acta A, 2018, 190: 506~512. 

    42. [42]

      D Shi, F Sheng, X Zhang et al. Talanta, 2018, 185: 106~112. 

    43. [43]

      P C Huang, N Gao, J F Li et al. Sens. Actuat. B, 2018, 255: 2779~2784. 

    44. [44]

      L Li, Y Liang, Y Zhao et al. Sens. Actuat. B, 2018, 262: 733~738. 

    45. [45]

      J Du, H Du, X Li et al. Sens. Actuat. B, 2017, 248: 318~323. 

    46. [46]

      X Wei, Y Wang, Y Zhao et al. Biosens. Bioelectron., 2017, 97: 332~337. 

    47. [47]

      X Zhang, Z Sun, Z Cui et al. Sens. Actuat. B, 2014, 191: 313~319. 

    48. [48]

      H Chen, J Zhang, H. Wu et al. Anal. Chim. Acta, 2015, 875: 92~98. 

    49. [49]

      N R Ha, I P Jung, S H Kim et al. Proc., Biochem., 2017, 62: 161~168. 

    50. [50]

      Z Huang, H Wang, W Yang. ACS Appl. Mater. Interf., 2015, 7: 8990~8998. 

    51. [51]

      Y Liu, X Wang. Anal. Methods, 2013, 5: 1442~1448. 

    52. [52]

      Y Q Dang, H W Li, B Wang et al. ACS Appl. Mater. Interf., 2009, 1: 1533~1538. 

    53. [53]

      J Xin, L Miao, S Chen et al. Anal. Methods, 2012, 4: 1259~1264. 

    54. [54]

      J R Kalluri, T Arbneshi, S Afrin Khan et al. Angew. Chem. Int. Ed., 2009, 48(51): 9668~9671. 

    55. [55]

      H Wang, W Xu, H Zhang et al. Small, 2011, 7: 1987~1992. 

    56. [56]

      X Zhuang, D Wang, L Yang et al. Analyst, 2013, 138: 3046~3052. 

    57. [57]

      J Deng, P Yu, L Yang et al. Anal. Chem., 2013, 85: 2516~2522. 

    58. [58]

      N Uehara, K Ookubo, T Shimizu. Lamuguir, 2010, 26(9): 6818~6825. 

    59. [59]

      Y Li, P Wu, H Xu et al. Analyst, 2011, 136: 196~200. 

    60. [60]

      B Kong, A Zhu, Y Luo et al. Angew. Chem. Int. Ed., 2011, 50(8): 1837~1840. 

    61. [61]

      H Su, Q Zheng, H Li. J. Mater. Chem., 2012, 22: 6546~6548. 

    62. [62]

      M Zhang, G Qing, C Xiong et al. Adv. Mater., 2013, 25: 749~754. 

    63. [63]

      J C Gukowsky, C Tan, Z Han et al. J. Food Sci., 2018, 83: 1631~1638. 

    64. [64]

      K Ai, Y Liu, L Lu. J. Am. Chem. Soc., 2009, 131: 9496~9497. 

    65. [65]

      J Du, Z Wang, X Peng et al. Ind. Eng. Chem. Res., 2015, 54: 12011~12016. 

    66. [66]

      T M Godoy-Reyes, A M Costero, P Gaviña et al. Anal. Chim. Acta, 2019, 1056: 146~152. 

    67. [67]

      J Zhang, Y Yuan, X Wang et al. Anal. Methods, 2012, 4: 1616~1618. 

    68. [68]

      J Zhang, X Xu, X Yang. Analyst, 2012, 137: 3437~3440. 

    69. [69]

      M Zhang, Y Q Liu, B C Ye. Analyst, 2011, 136: 4558~4562. 

    70. [70]

      S Kim, M S Eom, S K Kim et al. Chem. Commun., 2013, 49: 152~154. 

    71. [71]

      X Y Chen, R T Ma, W Ha et al. Sens. Actuat. B, 2018, 274: 668~675. 

    72. [72]

      Y Jiang, H Zhao, N Zhu et al. Angew. Chem. Int. Ed., 2008, 47: 8601~8604. 

    73. [73]

      F Chai, C Wang, T Wang et al. ACS Appl. Mater. Interf., 2010, 2: 1466~1470. 

    74. [74]

      Y Guo, Y Zhang, H Shao et al. Anal. Chem., 2014, 86: 8530~8534. 

    75. [75]

      H Wang, Y Wang, J Jin et al. Anal. Chem., 2008, 80: 9021~9028. 

    76. [76]

      Y Jiang, H Zhao, Y Lin et al. Angew. Chem. Int. Ed., 2010, 49: 4800~4804. 

    77. [77]

      Q Ma, Y Wang, J Jia et al. Food Chem., 2018, 249: 98~103. 

    78. [78]

      D Shi, F Sheng, X Zhang et al. Talanta, 2018, 185: 106~112. 

    79. [79]

      Y Gan, T Liang, Q Hu et al. Talanta, 2019, 208: 120231. 

  • 加载中
    1. [1]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    2. [2]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    3. [3]

      Zhenli Sun Ning Wang Kexin Lin Qin Dai Yufei Zhou Dandan Cao Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095

    4. [4]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    5. [5]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    6. [6]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    7. [7]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    8. [8]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    9. [9]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    10. [10]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

    11. [11]

      Ruming Yuan Laiying Zhang Xiaoming Xu Pingping Wu Gang Fu . Application of Mathematica in Visualizing Physical Chemistry Formulas. University Chemistry, 2024, 39(8): 375-382. doi: 10.3866/PKU.DXHX202401030

    12. [12]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    13. [13]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    14. [14]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    15. [15]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    16. [16]

      Qizhi Yao Gu Jin Pingping Zhu . Modular Analytical Chemistry Experimental Teaching Based on “Comprehensive + Exploratory” Experiments: “One Student, One Plan”, Individualized Experimental Teaching Method. University Chemistry, 2024, 39(3): 143-148. doi: 10.3866/PKU.DXHX202309071

    17. [17]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    18. [18]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    19. [19]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    20. [20]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

Metrics
  • PDF Downloads(11)
  • Abstract views(859)
  • HTML views(219)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return