Citation: ZHANG Xiao-rui, ZOU Chong, ZHAO Jun-xue, MA Cheng, HU Bing, LIU Shi-wei, HE Jiang-yong. Effect of H2 and CO as pyrolysis atmosphere on chemical structure of char by XRD and Raman methods[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(11): 1288-1297. shu

Effect of H2 and CO as pyrolysis atmosphere on chemical structure of char by XRD and Raman methods

  • Corresponding author: ZOU Chong, zouchong985@163.com ZHAO Jun-xue, Zhaojunxue1962@126.com
  • Received Date: 8 July 2019
    Revised Date: 14 September 2019

    Fund Project: Shaanxi Provincial Association of Science and Technology Youth Talents Lifting Plan 20190603The project was supported by National Natural Science Foundation of China (51374166, 51704224), Shaanxi Provincial Key Research and Development Program Funding Project (2017TSCXL-GY-04-01, 2015Ktzdsf01-04), Shaanxi Provincial Association of Science and Technology Youth Talents Lifting Plan (20190603) and Shaanxi Provincial Department of Education Serves Local Special Projects(17JF012)Shaanxi Provincial Key Research and Development Program Funding Project 2015Ktzdsf01-04Shaanxi Provincial Key Research and Development Program Funding Project 2017TSCXL-GY-04-01Shaanxi Provincial Department of Education Serves Local Special Projects 17JF012National Natural Science Foundation of China 51374166National Natural Science Foundation of China 51704224

Figures(10)

  • XRD and Raman spectroscopy were used to study chemical structure evolution of Shenmu coal in the main pyrolysis temperature range (450-750℃) and three pyrolysis atmospheres (N2, H2-containing and CO-containing). Correlation of structural parameters obtained by the two methods was compared. The results show that the char prepared by pyrolysis of raw coal in N2 has a continuous increase in the size of carbon crystallites in the transverse direction, a gradual increase of spacing in the longitudinal direction, and a sharp change of stacking height around 650℃. Raman parameter AD1/AG increases, while AG/Aall decreases, indicating a decrease in proportion of the ordered char structure. The H2-containing atmosphere promotes the longitudinal development of the carbon crystallite structure, increases the conversion of small molecule groups and the ordered degree of char. The influence of CO-containing atmosphere on the carbon crystallite structure parameters is less than that of the H2 atmosphere. But below 700℃, the dense carbon particles produced by CO-containing atmosphere due to carbon deposition are entrapped on the char surface, resulting in an increase in the ordered degree of char carbon. There is a certain correlation between Lc and AG/Aall, and d002 and AD1/AG of char; La has a good positive correlation with AD1/AG.
  • 加载中
    1. [1]

      GAO Jin-sheng. Coal Pyrolysis, Coking and Coal Tar Processing[M]. Beijing:Chemical Industry Press, 2010.

    2. [2]

      HE Zhi-bao. Hydropyrolysis of Shenfu coal[D]. Dalian: Dalian University of Technology, 2016. 

    3. [3]

      YU Ji-shun. Coal Chemical Industry[M]. Beijing:Metallugical Industry Press, 2000.

    4. [4]

      ZHONG M, GAO S Q, ZHOU Q, YUE J R, MA F Y, XU G W. Characterization of char from high temperature fluidized bed coal pyrolysis in complex atmospheres[J]. Particuology, 2016,25:59-67. doi: 10.1016/j.partic.2014.12.018

    5. [5]

      WANG Q H, ZHANG R, LUO Z Y, FANG M X, CEN K F. Effects of pyrolysis atmosphere and temperature on coal char characteristics and gasification reactivity[J]. Energy Technol, 2016,4:543-550. doi: 10.1002/ente.201500366

    6. [6]

      BAI Zong-qing, CHEN Hao-kan, LI-Wen , LI Bao-qing. Study on the thermal performance of metallurgical coke under methane by TG-MS[J]. J Fuel Chem Technol, 2005,33(4):426-430. doi: 10.3969/j.issn.0253-2409.2005.04.009

    7. [7]

      ZHANG H Y, XIAO R, WANG D H, HE G Y, SHAO S S, ZHANG J B, ZHONG Z P. Biomass fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4 and H2 atmospheres[J]. Bioresour Technol, 2011,102(5):4258-4264. doi: 10.1016/j.biortech.2010.12.075

    8. [8]

      HU Bing, ZOU Chong, ZHAO Jun-xue, MA Cheng, HE Jiang-yong, LI Xiao-ming. Effects of cooling methods on the structure and properties of low temperature pyrolytic semi-coke[J]. Coal Convers, 2018,41(1):13-18. doi: 10.3969/j.issn.1004-4248.2018.01.002

    9. [9]

      LIANG Ding-cheng, XIE Qing, DANG Jia-tao, YANG Ming-shun, HE Lu, DONG He. Microcrystalline structure and morphology of chars derived from medium-temperature pyrolysis of coals with different metamorphisms[J]. J China Univ Min Technol, 2016,45(4):799-806.  

    10. [10]

      WANG Qi. In-situ FT-IR and Raman spectroscopic studies on the pyrolysis of low-rank lignite[D]. Dalian: Dalian University of Techology, 2006. 

    11. [11]

      SUN Jia-liang, CHEN Xu-jun, WANG Fang, LIN Xiong-chao, WANG Yong-gang. Effects of oxygen on the structure and reactivity of char during steam gasification of Shengli brown coal[J]. J Fuel Chem Technol, 2015,43(7):769-778. doi: 10.3969/j.issn.0253-2409.2015.07.001 

    12. [12]

      LIU Dong-dong, GAO Ji-hui, WU Shao-hua, QIN Yu-kun. XRD and Raman characterization of microstructure changes of char during pyrolysis[J]. J Harbin Inst Technol, 2016,48(7):39-45.  

    13. [13]

      ZICKLER G A, SMARSLY B, GIERLINGER N, PETERLIK H, PARIS O. A reconsideration of the relationship between the crystallite size La of carbons determined by X-ray diraction and Raman spectroscopy[J]. Carbon, 2006,44:3239-3246. doi: 10.1016/j.carbon.2006.06.029

    14. [14]

      TUINSTRA F, KOENIG J L. Raman spectrum of graphite[J]. J Chem Phys, 1970,53(3):1126-1130. doi: 10.1063/1.1674108

    15. [15]

      YAMAUCHI S, KURIMOTO Y. Raman spectroscopic study on pyrolyzed wood and bark of Japanese cedar:Temperature dependence of Raman parameters[J]. Japan Wood Res Soc, 2003,49:235-240.  

    16. [16]

      QIU H P, GUO Q G, SONG Y Z, ZHAI G T, SONG J R, LIU L. Study of the relationship between thermal conductivity and microcrystalline parameters of bulk graphite[J]. New Carbon Mater, 2002,17(1):36-40.  

    17. [17]

      ZHAO Hong-yu, LI Yu-huan, SHU Yuan-feng, SONG Qiang, LYU Jun-xin, WANG Zi-min, ZENG Ming, SHU Xin-qian. Effect of calcium oxide on pyrolysis products distribution and char structure of lignite and anthracite[J]. Coal Sci Technol, 2016,44(3):177-183.  

    18. [18]

      YIN Yan-shan, WANG Ze-zhong, TIAN Hong, ZHANG Wei, YAN Xiao-zhong, CHEN Dong-lin. Effect of pyrolysis temperature on microstructure and de-NOx reactivity of Anthracite char[J]. Chem Ind Eng Prog, 2015,34(6):1636-1640.  

    19. [19]

      ZHANG Jin-gang, SUN Zhi-gang, GUO Qiang, WANG Xing-jun, YU Guang-suo, LIU Hai-feng, WANG Fu-chen. Structural changes of Shenfu coal in pyrolysis and hydrogasification reactivity of the char[J]. J Fuel Chem Technol, 2017,45(2):129-137. doi: 10.3969/j.issn.0253-2409.2017.02.001 

    20. [20]

      DUAN Chun-lei. Structural characteristics of low-middle rank coals and generation mechanisms of methane and hydrogen during pyrolysis[D]. Taiyuan: Taiyuan University of Technology, 2007. 

    21. [21]

      CHENG Zhu. Study on the emission characteristic of polycylic aromatic hydrocarbons from coal pyrolysis[D]. Taiyuan: Taiyuan University of Technology, 2010. 

    22. [22]

      KNIGHT D S, WHITE W B. Characterization of diamond films by Raman spectroscopy[J]. J Mater Res, 1989,4(2):385-393. doi: 10.1557/JMR.1989.0385

    23. [23]

      CANCADO L G, TAKAI K, ENOKI T, ENDO M, KIM Y A, MIZUSAKI H, JORIO A, COELHO L, PANIAGO R, PIMENTA M A. General equation for the determination on the crystallite size La of nanographite by Raman spectroscopy[J]. Appl Phys Lett, 2006,88(16):163106-163106-3. doi: 10.1063/1.2196057

  • 加载中
    1. [1]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    2. [2]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    3. [3]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    4. [4]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    5. [5]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    6. [6]

      Wen Shi Zhangwen Wei Mei Pan Chengyong Su . Explorations on the Course Construction of Structural Chemistry Practice and Application Targeting the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 96-100. doi: 10.12461/PKU.DXHX202409036

    7. [7]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    8. [8]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

    9. [9]

      Zhiguang Xu Xuan Xu Qiong Luo Ganquan Wang Bin Peng . Reform and Practice of Online and Offline Blended Teaching in Structural Chemistry Course. University Chemistry, 2024, 39(6): 195-200. doi: 10.3866/PKU.DXHX202310112

    10. [10]

      Qiong Luo Zhiguang Xu Xuan Xu Ganquan Wang Bin Peng . Exploration of Innovative Teaching in Structural Chemistry Course under the Emerging Engineering Education Model. University Chemistry, 2025, 40(4): 200-207. doi: 10.12461/PKU.DXHX202407016

    11. [11]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    12. [12]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    13. [13]

      Qingfeng Zhang Shang-E Wei Hua Hou Xuan Zhao Zixuan Yang Lin Zhuang . Construction and Reform of the Structural Chemistry Curriculum and Textbooks under the Chemistry “101 Plan”: an In-Depth Exploration for Cultivating Top-Notch Innovative Talents. University Chemistry, 2024, 39(10): 38-44. doi: 10.12461/PKU.DXHX202409047

    14. [14]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    15. [15]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    16. [16]

      Shu TianWenxin HuangJunrui HuHuiling WangZhipeng ZhangLiying XuJunrong LiYao Sun . Exploring the frontiers of plant health: Harnessing NIR fluorescence and surface-enhanced Raman scattering modalities for innovative detection. Chinese Chemical Letters, 2025, 36(3): 110336-. doi: 10.1016/j.cclet.2024.110336

    17. [17]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    18. [18]

      Qiying Xia Guokui Liu Yunzhi Li Yaoyao Wei Xia Leng Guangli Zhou Aixiang Wang Congcong Mi Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007

    19. [19]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    20. [20]

      Wenliang Wang Weina Wang Lixia Feng Nan Wei Sufan Wang Tian Sheng Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063

Metrics
  • PDF Downloads(9)
  • Abstract views(861)
  • HTML views(144)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return