Effect of H2 and CO as pyrolysis atmosphere on chemical structure of char by XRD and Raman methods
- Corresponding author: ZOU Chong, zouchong985@163.com ZHAO Jun-xue, Zhaojunxue1962@126.com
Citation:
ZHANG Xiao-rui, ZOU Chong, ZHAO Jun-xue, MA Cheng, HU Bing, LIU Shi-wei, HE Jiang-yong. Effect of H2 and CO as pyrolysis atmosphere on chemical structure of char by XRD and Raman methods[J]. Journal of Fuel Chemistry and Technology,
;2019, 47(11): 1288-1297.
GAO Jin-sheng. Coal Pyrolysis, Coking and Coal Tar Processing[M]. Beijing:Chemical Industry Press, 2010.
HE Zhi-bao. Hydropyrolysis of Shenfu coal[D]. Dalian: Dalian University of Technology, 2016.
YU Ji-shun. Coal Chemical Industry[M]. Beijing:Metallugical Industry Press, 2000.
ZHONG M, GAO S Q, ZHOU Q, YUE J R, MA F Y, XU G W. Characterization of char from high temperature fluidized bed coal pyrolysis in complex atmospheres[J]. Particuology, 2016,25:59-67. doi: 10.1016/j.partic.2014.12.018
WANG Q H, ZHANG R, LUO Z Y, FANG M X, CEN K F. Effects of pyrolysis atmosphere and temperature on coal char characteristics and gasification reactivity[J]. Energy Technol, 2016,4:543-550. doi: 10.1002/ente.201500366
BAI Zong-qing, CHEN Hao-kan, LI-Wen , LI Bao-qing. Study on the thermal performance of metallurgical coke under methane by TG-MS[J]. J Fuel Chem Technol, 2005,33(4):426-430. doi: 10.3969/j.issn.0253-2409.2005.04.009
ZHANG H Y, XIAO R, WANG D H, HE G Y, SHAO S S, ZHANG J B, ZHONG Z P. Biomass fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4 and H2 atmospheres[J]. Bioresour Technol, 2011,102(5):4258-4264. doi: 10.1016/j.biortech.2010.12.075
HU Bing, ZOU Chong, ZHAO Jun-xue, MA Cheng, HE Jiang-yong, LI Xiao-ming. Effects of cooling methods on the structure and properties of low temperature pyrolytic semi-coke[J]. Coal Convers, 2018,41(1):13-18. doi: 10.3969/j.issn.1004-4248.2018.01.002
LIANG Ding-cheng, XIE Qing, DANG Jia-tao, YANG Ming-shun, HE Lu, DONG He. Microcrystalline structure and morphology of chars derived from medium-temperature pyrolysis of coals with different metamorphisms[J]. J China Univ Min Technol, 2016,45(4):799-806.
WANG Qi. In-situ FT-IR and Raman spectroscopic studies on the pyrolysis of low-rank lignite[D]. Dalian: Dalian University of Techology, 2006.
SUN Jia-liang, CHEN Xu-jun, WANG Fang, LIN Xiong-chao, WANG Yong-gang. Effects of oxygen on the structure and reactivity of char during steam gasification of Shengli brown coal[J]. J Fuel Chem Technol, 2015,43(7):769-778. doi: 10.3969/j.issn.0253-2409.2015.07.001
LIU Dong-dong, GAO Ji-hui, WU Shao-hua, QIN Yu-kun. XRD and Raman characterization of microstructure changes of char during pyrolysis[J]. J Harbin Inst Technol, 2016,48(7):39-45.
ZICKLER G A, SMARSLY B, GIERLINGER N, PETERLIK H, PARIS O. A reconsideration of the relationship between the crystallite size La of carbons determined by X-ray diraction and Raman spectroscopy[J]. Carbon, 2006,44:3239-3246. doi: 10.1016/j.carbon.2006.06.029
TUINSTRA F, KOENIG J L. Raman spectrum of graphite[J]. J Chem Phys, 1970,53(3):1126-1130. doi: 10.1063/1.1674108
YAMAUCHI S, KURIMOTO Y. Raman spectroscopic study on pyrolyzed wood and bark of Japanese cedar:Temperature dependence of Raman parameters[J]. Japan Wood Res Soc, 2003,49:235-240.
QIU H P, GUO Q G, SONG Y Z, ZHAI G T, SONG J R, LIU L. Study of the relationship between thermal conductivity and microcrystalline parameters of bulk graphite[J]. New Carbon Mater, 2002,17(1):36-40.
ZHAO Hong-yu, LI Yu-huan, SHU Yuan-feng, SONG Qiang, LYU Jun-xin, WANG Zi-min, ZENG Ming, SHU Xin-qian. Effect of calcium oxide on pyrolysis products distribution and char structure of lignite and anthracite[J]. Coal Sci Technol, 2016,44(3):177-183.
YIN Yan-shan, WANG Ze-zhong, TIAN Hong, ZHANG Wei, YAN Xiao-zhong, CHEN Dong-lin. Effect of pyrolysis temperature on microstructure and de-NOx reactivity of Anthracite char[J]. Chem Ind Eng Prog, 2015,34(6):1636-1640.
ZHANG Jin-gang, SUN Zhi-gang, GUO Qiang, WANG Xing-jun, YU Guang-suo, LIU Hai-feng, WANG Fu-chen. Structural changes of Shenfu coal in pyrolysis and hydrogasification reactivity of the char[J]. J Fuel Chem Technol, 2017,45(2):129-137. doi: 10.3969/j.issn.0253-2409.2017.02.001
DUAN Chun-lei. Structural characteristics of low-middle rank coals and generation mechanisms of methane and hydrogen during pyrolysis[D]. Taiyuan: Taiyuan University of Technology, 2007.
CHENG Zhu. Study on the emission characteristic of polycylic aromatic hydrocarbons from coal pyrolysis[D]. Taiyuan: Taiyuan University of Technology, 2010.
KNIGHT D S, WHITE W B. Characterization of diamond films by Raman spectroscopy[J]. J Mater Res, 1989,4(2):385-393. doi: 10.1557/JMR.1989.0385
CANCADO L G, TAKAI K, ENOKI T, ENDO M, KIM Y A, MIZUSAKI H, JORIO A, COELHO L, PANIAGO R, PIMENTA M A. General equation for the determination on the crystallite size La of nanographite by Raman spectroscopy[J]. Appl Phys Lett, 2006,88(16):163106-163106-3. doi: 10.1063/1.2196057
Yang Wang , Yunpeng Fu , Xiaoji Liu , Guotao Zhang , Guobin Li , Wanqiang Liu , Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
Yan Liu , Yuexiang Zhu , Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084
Wen Shi , Zhangwen Wei , Mei Pan , Chengyong Su . Explorations on the Course Construction of Structural Chemistry Practice and Application Targeting the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 96-100. doi: 10.12461/PKU.DXHX202409036
Yi Li , Zhaoxiang Cao , Peng Liu , Xia Wu , Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154
Yanxin Wang , Hongjuan Wang , Yuren Shi , Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005
Zhiguang Xu , Xuan Xu , Qiong Luo , Ganquan Wang , Bin Peng . Reform and Practice of Online and Offline Blended Teaching in Structural Chemistry Course. University Chemistry, 2024, 39(6): 195-200. doi: 10.3866/PKU.DXHX202310112
Qiong Luo , Zhiguang Xu , Xuan Xu , Ganquan Wang , Bin Peng . Exploration of Innovative Teaching in Structural Chemistry Course under the Emerging Engineering Education Model. University Chemistry, 2025, 40(4): 200-207. doi: 10.12461/PKU.DXHX202407016
Ce Liang , Qiuhui Sun , Adel Al-Salihy , Mengxin Chen , Ping Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306
Ping Song , Nan Zhang , Jie Wang , Rui Yan , Zhiqiang Wang , Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087
Qingfeng Zhang , Shang-E Wei , Hua Hou , Xuan Zhao , Zixuan Yang , Lin Zhuang . Construction and Reform of the Structural Chemistry Curriculum and Textbooks under the Chemistry “101 Plan”: an In-Depth Exploration for Cultivating Top-Notch Innovative Talents. University Chemistry, 2024, 39(10): 38-44. doi: 10.12461/PKU.DXHX202409047
Chengde Wang , Liping Huang , Shanshan Wang , Lihao Wu , Yi Wang , Jun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383
Huihui LIU , Baichuan ZHAO , Chuanhui WANG , Zhi WANG , Congyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059
Shu Tian , Wenxin Huang , Junrui Hu , Huiling Wang , Zhipeng Zhang , Liying Xu , Junrong Li , Yao Sun . Exploring the frontiers of plant health: Harnessing NIR fluorescence and surface-enhanced Raman scattering modalities for innovative detection. Chinese Chemical Letters, 2025, 36(3): 110336-. doi: 10.1016/j.cclet.2024.110336
Yinyin Qian , Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051
Qiying Xia , Guokui Liu , Yunzhi Li , Yaoyao Wei , Xia Leng , Guangli Zhou , Aixiang Wang , Congcong Mi , Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007
Yaping Li , Sai An , Aiqing Cao , Shilong Li , Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185
Wenliang Wang , Weina Wang , Lixia Feng , Nan Wei , Sufan Wang , Tian Sheng , Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063
(a): in the blank experiment, the CO2 release curves were in pure N2, containing CO and containing H2; (b): SEM image of corundum surface after the blank experiment in CO-containing atmosphere
(a): AD1/AG-d002; (b): AG/Aall-Lc; (c): AD1/AG-La