Citation: Du Mengfan, Chen Qirong, Zou Yu, Yang Kaimeng, Hu Jianxin, Meng Xiangfu. Molten Salt Synthesis of TiO2 Nanosheet with Rich Oxygen Vacancies and Its Photocatalytic Activity[J]. Chemistry, ;2020, 83(3): 232-239. shu

Molten Salt Synthesis of TiO2 Nanosheet with Rich Oxygen Vacancies and Its Photocatalytic Activity

  • Corresponding author: Meng Xiangfu, xfmeng@cnu.edu.cn
  • Received Date: 25 November 2019
    Accepted Date: 28 December 2019

Figures(10)

  • The positive effects of oxygen vacancy defects on the performance of semiconductor materials are attracting increasing attention. Herein, blue TiO2 nanosheet with rich oxygen vacancies was successfully synthesized via a one-step molten salt method using the hydrolysis product of TiCl4 in trifluoroacetic acid as a precursor. Due to the low oxygen partial pressure of the molten salt, the lattice oxygen of TiO2 was consumed during calcination, leading to a large amount of oxygen vacancies and Ti3+. UV-Visible diffuse reflectance spectroscopy showed that the band gap of blue TiO2 nanosheets was reduced to 2.69 eV, and the light adsorption range was extended from the ultraviolet region to the visible region. The as-prepared blue TiO2 nanosheets exhibits excellent photocatalytic activity, and the photodegradation rate of rhodamine B is 47.3 times that of pure TiO2 under full-spectrum light irradiation. At the same time, the formed lattice fluorine doping can effectively stabilize the oxygen vacancies and greatly improve the separation efficiency of the photogenerated carriers. This work provides a new insight for constructing oxygen vacancies in semiconductor oxide materials.
  • 加载中
    1. [1]

      Fang W Z, Dappozze F, Guillard C, et al. J. Phys. Chem. C, 2017, 121(32):17068~17076. 

    2. [2]

      Peper J, Vinyard D, Brudvig G, et al. J. Am. Chem. Soc., 2017, 139(8):2868~2871. 

    3. [3]

      Fang W Z, Khrouz L, Zhou Y, et al. Phys. Chem. Chem. Phys., 2017, 19(21):13875~13881. 

    4. [4]

      Wang G M, Wang H Y, Ling Y C, et al. Nano Lett., 2011, 11(7):3026~3033. 

    5. [5]

      Xing M Y, Zhang J L, Chen F, et al. Chem. Commun., 2011, 47(17):4947~4949. 

    6. [6]

      Grabstanowicz L R, Gao S M, Li T, et al. Inorg. Chem., 2013, 52(7):3884~3890. 

    7. [7]

      Jiang W Y, Bai S, Wang L M, et al. Small, 2016, 12(12):1640~1648. 

    8. [8]

      Kong L N, Jiang Z Q, Wang C H, et al. Appl. Mater. Interf., 2015, 7(14):7752~7758. 

    9. [9]

      Zhang H, Cai J M, Wang Y T, et al. Appl. Catal. B, 2018, 220:126~136. 

    10. [10]

      Yang Y R, Gao P, Ren X C, et al. Appl. Catal. B, 2017, 218:751~757. 

    11. [11]

      Zhang X C, Hu W Y, Zhang K F, et al. ACS Sustain. Chem. Eng., 2017, 5(8):6894~6901. 

    12. [12]

      Yu C L, Wu Z, Liu R Y, et al. Appl. Catal. B, 2017, 209:1~11. 

    13. [13]

      Shannon R D, Pask J A. J. Am. Ceram. Soc., 1965, 48(8):391~198. 

    14. [14]

      Liu L J, Jiang Y Q, Zhao H L, et al. ACS Catal., 2016, 6(2):1097~1108. 

    15. [15]

      Pei Z X, Weng S X, Liu P. Appl. Catal. B, 2016, 180:463~470. 

    16. [16]

      Wang Y, Zhang H M, Han Y H, et al. Chem. Commun., 2011, 47(10):2829~2831. 

    17. [17]

      Eder D, Motta M S, Windle A H. Acta Mater., 2010, 58(13):4406~4413. 

    18. [18]

      Sarkar D, Ishchuk S, Taffa D H, et al. J. Phys. Chem. C, 2016, 120(7):3853~3862. 

    19. [19]

      Xu L M, Ming L F, Chen F. ChemCatChem, 2015, 7(12):1797~1800. 

    20. [20]

      Xing M Y, Zhang J L, Chen F, et al. Chem. Commun., 2011, 47(17):4947~4949. 

    21. [21]

      Zhou Y, Chen C H, Wang N N, et al. J. Phys. Chem. C, 2016, 120(11):6116~6124. 

    22. [22]

      Fang W Z, Xing M Y, Zhang J L. Appl. Catal. B, 2014, 160~161:240~246. 

    23. [23]

      Samsudin E M, Hamid S B A, Juan J C, et al. Appl. Surf. Sci., 2016, 365:57~68. 

    24. [24]

      Zou Y, Yang K M, Chen Q R, et al. RSC Adv., 2018, 8(64):36819~36825. 

    25. [25]

      Dai K, Lu L H, Liu Q, et al. Dalton Transac., 2014, 43(5):2202~2210. 

    26. [26]

      Yu J C, Yu J G, Ho W K, et al. Chem. Mater., 2002, 14(9):3808~3816. 

    27. [27]

      Zhu Q, Wang X J, Jiang J, et al. J. Phys. Chem. C, 2017, 121(41):22806~22814. 

    28. [28]

      Zhang N, Li X Y, Ye H C, et al. J. Am. Chem. Soc., 2016, 138(28):8928~8935. 

    29. [29]

      Kim W, Tachikawa T, Moon G H, et al. Angew. Chem. Int. Ed., 2014, 53(51):14036~14041. 

    30. [30]

      Liu B S, Cheng K, Nie S C, et al. J. Phys. Chem. C., 2017, 121(36):19836~19848 

    31. [31]

      Cushing S K, Meng F, Zhang J, et al. ACS Catal., 2017, 7(3):1742~1748. 

    32. [32]

      Lan Y P, Sohn H Y, Mohassab Y, et al. J. Am. Ceram. Soc., 2017, 100:1863~1875. 

  • 加载中
    1. [1]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

    2. [2]

      Yachao HUANGChuanwang ZENGGuiyong LIUJinming ZENGChao LIUXiaopeng QI . Oxygen vacancies and phosphorus doping enhanced metal-organic framework derived nitrogen-doped carbon-coated Co3O4 bifunctional electrocatalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2251-2260. doi: 10.11862/CJIC.20250133

    3. [3]

      Chunchun WangChangjun YouKe RongChuqi ShenFang YangShijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045

    4. [4]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    5. [5]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    8. [8]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    9. [9]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    10. [10]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    11. [11]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    12. [12]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    13. [13]

      Jiayin Hu Yafei Guo Long Li Tianlong Deng . Teaching Innovation of Salt-Water System Phase Diagrams under the “Dual Carbon” Background: Introducing the Pressurized CO2 Carbonization Phase Equilibria. University Chemistry, 2025, 40(11): 31-36. doi: 10.12461/PKU.DXHX202412031

    14. [14]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    15. [15]

      Zhangyong LIULihui XUYue YANGLiming WANGHong PANXinzhe HUANGXueqiang FUYingxiu ZHANGMeiran DOUMeng WANGYi TENG . Preparation and photocatalytic performance of CsxWO3/TiO2 based on full spectral response. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1445-1464. doi: 10.11862/CJIC.20240345

    16. [16]

      Runhua ChenQiong WuJingchen LuoXiaolong ZuShan ZhuYongfu Sun . Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives. Acta Physico-Chimica Sinica, 2025, 41(3): 100019-0. doi: 10.3866/PKU.WHXB202308052

    17. [17]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    18. [18]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    19. [19]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    20. [20]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

Metrics
  • PDF Downloads(27)
  • Abstract views(3652)
  • HTML views(1181)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return