Citation: ZHANG Rui-zhi, LUO Yong-hao, YIN Ren-hao. Experimental study on the effect of chlorine on benzene oxidation[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(10): 1272-1280. shu

Experimental study on the effect of chlorine on benzene oxidation

  • Corresponding author: LUO Yong-hao, yhluo@sjtu.edu.cn
  • Received Date: 22 May 2018
    Revised Date: 31 July 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China (51706139), China Postdoctoral Science Foundation (2016M601594) and Science and Technology Commission of Shanghai (16DZ1202902)Science and Technology Commission of Shanghai 16DZ1202902the National Natural Science Foundation of China 51706139China Postdoctoral Science Foundation 2016M601594

Figures(12)

  • To study the oxidative cracking process of tars during the combustion of syngas from MSW gasification, C6H6 was selected as the model compound, and the experiments of oxidation were carried out with and without Cl2 in a homogeneous tubular flow reactor coupled with FT-IR. The oxidative products and oxidative degree as functions of temperature and ER were compared to reveal the effect of chlorine on C6H6 oxidation. The results indicate that chlorine has a clear excitation effect on C6H6 oxidation at low temperature. However, a further oxidation to CO2 is inhibited by chlorine due to the increased OH consumption. Moreover, chlorine also promotes the polymerization reaction at high temperature and low equivalence ratio. Thus, the combustion of syngas from MSW gasification can proceed at lower temperature, while the environments with high temperature and low equivalence ratio should be avoided for the prevention of polymerization. Also, the chlorine content of MSW should be controlled to ensure the complete oxidation.
  • 加载中
    1. [1]

      CHEN Tong. Formation mechanism and inhibition technologies of PCDD/Fs produced from MSW incineration[D]. Hangzhou: Zhejiang University, 2006.

    2. [2]

      ZHANG Xiang-he. NIMBY of waste treatment plant and its solution mechanism of social conflict[D]. Chongqing: Chongqing University, 2010.

    3. [3]

      PÉREZ-RAMÍREZ J, MONDELLI C, SCHMIDT T, SCHLVTER O F K, WOLF A, MLECZKO L, DREIER T. Sustainable chlorine recycling via catalysed HCl oxidation:from fundamentals to implementation[J]. Energy Environ Sci, 2011,4(12):4786-4799. doi: 10.1039/c1ee02190g

    4. [4]

      LU Sheng-yong. Dioxin formation inhibition and control mechanisms from coal and waste combustion processes[D]. Hangzhou: Zhejiang University, 2004.

    5. [5]

      ALTARAWNEH M, DLUGOGORSKI B Z, KENNEDY E M, MACKIE J C. Mechanisms for formation, chlorination, dechlorination and destruction of polychlorinated dibenzo-dioxins and dibenzofurans (PCDD/Fs)[J]. Prog Energy Combust, 2009,35(3):245-274. doi: 10.1016/j.pecs.2008.12.001

    6. [6]

      PANEPINTO D, TEDESCO V, BRIZIO E, GENON G. Environmental performances and energy efficiency for MSW gasification treatment[J]. Waste Biomass Valorization, 2015,6(1):123-135. doi: 10.1007/s12649-014-9322-7

    7. [7]

      ZHANG R Z, YIN R H, LUO Y H. Elimination of C-Cl bonds by a homogeneous conversion with sufficient H2:An attempt for the control of dioxin emission in Municipal Solid Waste gasification[J]. Energy Fuels, 2015,27(9):4453-4462.  

    8. [8]

      YIN R H, ZHANG R Z, LUO Y H. The effect of utilizing homogeneous conversion to control the formation of chlorinated hydrocarbons during PVC pyrolysis[J]. Environ Prog Sustainable Energy, 2016,35(4):1012-1019. doi: 10.1002/ep.12313

    9. [9]

      ZHANG Rui-zhi, LUO Yong-hao, YIN Ren-hao. Experimental study on the inhibition effect of H2 on dioxin emission in MSW gasification[J]. Proc CSEE, 2016,36(8):2195-2201.  

    10. [10]

      WIKSTRÖM E, RYAN S, TOUATI A, TELFER M, TABOR D, GULLETT B K. Importance of chlorine speciation on de novo formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans[J]. Environ Sci Technol, 2003,37(6):1108-1113. doi: 10.1021/es026262d

    11. [11]

      GULLETT B K, SAROFIM A F, SMITH K A, PROCACCINI C. The role of chlorine in dioxin formation[J]. Process Saf Environ, 2000,78(1):47-52. doi: 10.1205/095758200530448

    12. [12]

      BASU P. Biomass Gasification and Pyrolysis:Practical Design and Theory[M]. USA:Academic press, 2010.

    13. [13]

      PROCACCINI C, BOZZELLI J W, LONGWELL J P, SAROFIM A F, SMITH K A. Formation of chlorinated aromatics by reactions of Cl·, Cl2, and HCl with benzene in the cool-down zone of a combustor[J]. Environ Sci Technol, 2003,37(8):1684-1689. doi: 10.1021/es011432s

    14. [14]

      WANG Bo, CHI Yong, YAN Jian-hua, NI Ming-jiang. Experimental study on CO oxidation inhibited by chlorine[J]. Proc CSEE, 2009,29(2):58-62. doi: 10.3321/j.issn:0258-8013.2009.02.011

    15. [15]

      ROESLER J R, YETTER R A, DRYER F L. Detailed kinetic modeling of moist CO oxidation inhibited by trace quantities of HCl[J]. Combust Sci Technol, 1992,85(1/6):1-22.  

    16. [16]

      TAYLOR P H, LENOIR D. Chloroaromatic formation in incineration processes[J]. Sci Total Environ, 2001,269(1):1-24.  

  • 加载中
    1. [1]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    2. [2]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    3. [3]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    4. [4]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    5. [5]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    6. [6]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    7. [7]

      Yan Xiao Shuling Li Yifan Li Jianing Fan Linlin Shi . Discovering the Beauty of Life: Adding Some “Ingredients” to Crystals. University Chemistry, 2024, 39(6): 366-372. doi: 10.3866/PKU.DXHX202312025

    8. [8]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    9. [9]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    10. [10]

      Chengpeng Liu Yinxia Fu . Design and Practice of Ideological and Political Education for the Public Elective Course “Life Chemistry Experiment” in Universities. University Chemistry, 2024, 39(10): 242-248. doi: 10.12461/PKU.DXHX202404064

    11. [11]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    14. [14]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    15. [15]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    16. [16]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    17. [17]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    18. [18]

      Zhanhong Tong Xiaoyu Xie Fangfang Chen . Appreciating Autumn Leaves: A Brief Analysis of the Causes behind “Frost Leaves Redder than February Flowers”. University Chemistry, 2024, 39(9): 183-188. doi: 10.12461/PKU.DXHX202404005

    19. [19]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    20. [20]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

Metrics
  • PDF Downloads(6)
  • Abstract views(1702)
  • HTML views(1022)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return