Citation: FU Jin-song, LIANG Wu-yang, LEI Qian, SUN Bing, CHEN Hong-lin, ZHANG Xiao-ming. Enhancement of the activity and stability of Au/TS-1 catalyst in the gas-phase epoxidation of propene through alkali carbonate modification[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(10): 1256-1262. shu

Enhancement of the activity and stability of Au/TS-1 catalyst in the gas-phase epoxidation of propene through alkali carbonate modification

  • Corresponding author: ZHANG Xiao-ming, xm.zhang@cioc.ac.cn
  • Received Date: 8 June 2020
    Revised Date: 8 July 2020

    Fund Project: The National Natural Science Foundation of China 21606258The project was supported by the National Natural Science Foundation of China (21606258)

Figures(5)

  • A serious of robust Au/TS-1 catalysts were prepared by modifying with various alkali carbonates including Na2CO3, K2CO3, Rb2CO3 and Cs2CO3 via the ultrasonic impregnation. The alkali carbonate-modified Au/TS-1 catalysts were characterized by XRD, ICP, XPS, UV-vis, FT-IR, NH3-TPD and HAADF-STEM and their catalytic activity and stability in the gas-phase epoxidation of propene were investigated in a fixed-bed reactor in the presence of H2 and O2. The results indicate that the modification with alkali carbonates can decrease the surface acidity and inhibit the aggregation of Au particles; moreover, Rb2CO3 and Cs2CO3 can even reduce the content of extra-framework Ti in Rb-Au/TS-1 and Ce-Au/TS-1. The catalytic activity and stability of Au/TS-1 in the gas-phase epoxidation of propene are significantly improved after the modification with alkali carbonates. In particular, Cs2CO3-modified Cs-Au/TS-1 catalyst exhibits the best performance, with a propene conversion of 6.2%, selectivity of 86.2% to propene oxide (PO) and H2 utilization efficiency of 26.2%. The results suggest that alkali carbonate modification could be a novel strategy to enhance the catalytic activity and stability of Au/TS-1 in propene epoxidation.
  • 加载中
    1. [1]

      HONG Y, KE L, LI Z, HUANG J, ZHAN G, ZHOU Y, SUN D, ZHANG J, LI Q. Seed-induced zeolitic TS-1 immobilized with bioinspired-Au nanoparticles for propylene epoxidation with O2 and H2[J]. Catal Lett, 2020,150(6):1798-1811. doi: 10.1007/s10562-019-03086-x

    2. [2]

      YAN Feng. The production technique and research progress of propylene oxide production by chlorohydrination method[J]. Acetaldehyde Acetic Acid Chem Ind, 2016,9:11-13+23.  

    3. [3]

      LIU Yu. A preliminary study on the developing of propylene oxide production process[J]. Chem Eng Des Commun, 2018,44(7)156.  

    4. [4]

      SONG Zhao-ning, FENG Xiang, LIU Yi-bin, YANG Chao-he, ZHOU Xing-gui. Advance in manipulation of catalyst structure and relationship of structure performance for direct propene epoxidation with H2 and O2[J]. Prog Chem, 2016,28(12):1762-1773.  

    5. [5]

      PANG Yi-jun, CHEN Xiao-hui, XU Cheng-zhi, LEI Yang-jun, WEI Ke-mei. Metal catalysts and reaction mechanisms in propylene epoxidation in gas phase by molecular oxygen[J]. Prog Chem, 2014,26(8):1307-1316.  

    6. [6]

      LI Z, GAO L, MA W, ZHONG Q. Higher gold atom efficiency over Au-Pd/TS-1 alloy catalysts for the direct propylene epoxidation with H2 and O2[J]. Appl Surf Sci, 2019,497.  

    7. [7]

      LI N, CHEN Y, SHEN Q, YANG B, LIU M, WEI L, TIAN W, ZHOU J. TS-1 supported highly dispersed sub-5 nm gold nanoparticles toward direct propylene epoxidation using H2 and O2[J]. J Solid State Chem, 2018,261:92-102. doi: 10.1016/j.jssc.2018.02.016

    8. [8]

      FENG X, SHENG N, LIU Y, CHEN X, CHEN D, YANG C, ZHOU X. Simultaneously enhanced stability and selectivity for propene epoxidation with H2 and O2 on Au catalysts supported on nano-crystalline mesoporous TS-1[J]. Acs Catal, 2017,7(4):2668-2675. doi: 10.1021/acscatal.6b03498

    9. [9]

      YUAN T, ZHU Q, GAO L, GAO J, MA W. The nitriding of titanium silicate-1 and its effect on gas-phase epoxidation of propylene[J]. J Mater Sci, 2020,55(9):3803-3811. doi: 10.1007/s10853-019-04166-4

    10. [10]

      LIU Y W, ZHANG X M, SUO J S. Gold supported on nitrogen-incorporated TS-1 for gas-phase epoxidation of propylene[J]. Chin J Catal, 2013,34(2):336-340. doi: 10.1016/S1872-2067(11)60474-9

    11. [11]

      CHOWDHITRY B, BRAVO-SUAREZ J J, DATE M, TSUBOTA S, HARUTA M. Trimethylamine as a gas-phase promoter:Highly efficient epoxidation of propylene over supported gold catalysts[J]. Angew Chem Int Ed, 2006,45(3):412-415. doi: 10.1002/anie.200502382

    12. [12]

      HUANG Jia-hui, REN Yue-gong. Preparation and application of catalyst which used in gas phase epoxidation of propene to propene oxide by a gas assistant: CN, 109926098 A[P]. 2018-01-30.

    13. [13]

      SONG Wan-cang, XIONG Guang, ZANG Jia-zhong, YU Hai-bin, WANG Xiang-sheng. Effect of basic additive in feedstock on propylene epoxidation catalyzed by TS-1/H2O2[J]. Chem Ind Eng Prog, 2020,39(3):1021-1028.  

    14. [14]

      KHOMANE R B, KULKARNI B D, PARASKAR A, SAINKAR S R. Synthesis, characterization and catalytic performance of titanium silicalite-1 prepared in micellar media[J]. Mater Chem Phys, 2002,76(1):99-103.  

    15. [15]

      LEE W-S, AKATAY M C, STACH E A, RIBEIRO H, DELGASS N. Enhanced reaction rate for gas-phase epoxidation of propylene using H2 and O2 by Cs promotion of Au/TS-1[J]. J Catal, 2013,308:98-113. doi: 10.1016/j.jcat.2013.05.023

    16. [16]

      LI Z, MA W, ZHONG Q. Effect of core-shell support on Au/S-1/TS-1 for direct propylene epoxidation and design of catalyst with higher activity[J]. Ind Eng Chem Res, 2019,58(10):4010-4016. doi: 10.1021/acs.iecr.8b04662

    17. [17]

      LI Z, GAO L, ZHU X, MA W, FENG X, ZHONG Q. Synergistic Enhancement over Au-Pd/TS-1 bimetallic catalysts for propylene epoxidation with H2 and O2[J]. ChemCatChem, 2019,11(20):5116-5123. doi: 10.1002/cctc.201900845

    18. [18]

      SONG Z, FENG X, SHENG N, LIN D, LI Y, LIU Y, CHEN X, CHEN D, ZHOU X, YANG C. Cost-efficient core-shell TS-1/silicalite-1 supported Au catalysts:Towards enhanced stability for propene epoxidation with H2 and O2[J]. Chem Eng J, 2019,377.  

    19. [19]

      SHAM T K, LAZARUS M S. X-ray photoelectron-spectroscopy (XPS) studies of clean and hydrated TiO2(rutile) surfaces[J]. Chem Phys Lett, 1979,68(2/3):426-432.  

    20. [20]

      ARILLO M A, LOPEZ M L, PICO C, VEIGA M L, JIMENEZ-LOPEZ A, RODRIGUEZ-CASTELLON E. Surface characterisation of spinels with Ti(IV) distributed in tetrahedral and octahedral sites[J]. J Alloys Compd, 2001,317:160-163.  

    21. [21]

      FU J, ZHANG X, LIANG W, LEI Q, SUN B, HE W, DENG G. Direct gas-phase oxidation of propylene to acetone in the presence of H2 and O2 over Au/TS-1 catalyst[J]. Curr Org Synth, 2020. doi: 10.2174/1570179417666200615154837

    22. [22]

      SHENG N, LIU Z, SONG Z, LIN D, FENG X, LIU Y, CHEN X, CHEN D, ZHOU X, YANG C. Enhanced stability for propene epoxidation with H2 and O2 over wormhole-like hierarchical TS-1 supported Au nanocatalyst[J]. Chem Eng J, 2019,377.  

    23. [23]

      REN Y, HUANG J, LV Q, XIE Y, LU A, HARUTA M. Dual-Component Sodium and Cesium Promoters for Au/TS-1:Enhancement of Propene Epoxidation with Hydrogen and Oxygen[J]. Ind Eng Chem Res, 2020,59(17):8155-8163. doi: 10.1021/acs.iecr.9b07011

    24. [24]

      LEE W-S, AKATAY M C, STACH E A, RIBEIRO H, DELGASS W N. Gas-phase epoxidation of propylene in the presence of H2 and O2 over small gold ensembles in uncalcined TS-1[J]. J Catal, 2014,313:104-112. doi: 10.1016/j.jcat.2014.02.013

    25. [25]

      FENG X, DUAN X, QIAN G, ZHOU X, CHEN D, YUAN W. Insights into size-dependent activity and active sites of Au nanoparticles supported on TS-1 for propene epoxidation with H2 and O2[J]. J Catal, 2014,317:99-104. doi: 10.1016/j.jcat.2014.05.006

    26. [26]

      HONG Y, HUANG J, ZHAN G, LI Q. Biomass-Modified Au/TS-1 as Highly Efficient and Stable Nanocatalysts for Propene Epoxidation with O2 and H2[J]. Ind Eng Chem Res, 2019,58(48):21953-21960. doi: 10.1021/acs.iecr.9b04107

    27. [27]

      MUL G, ZWIJNENBURG A, Van Der LINDEN B, MAKKEE M, MOULIJN J A. Stability and selectivity of Au/TiO2 and Au/TiO2/SiO2 catalysts in propene epoxidation:An in situ FT-IR study[J]. J Catal, 2001,201(1):128-137. doi: 10.1006/jcat.2001.3239

    28. [28]

      LU J, ZHANG X, BRAVO-SUAREZ J J, FUJITANI T, OYAMA S T. Effect of composition and promoters in Au/TS-1 catalysts for direct propylene epoxidation using H2 and O2[J]. Catal Today, 2009,147(3/4):186-195.  

    29. [29]

      LI Z, WANG Y, ZHANG J, WANG D, MA W. Better performance for gas-phase epoxidation of propylene using H2 and O2 at lower temperature over Au/TS-1 catalyst[J]. Catal Commun, 2017,90:87-90. doi: 10.1016/j.catcom.2016.12.002

    30. [30]

      RUIZ A, VAN DER LINDEN B, MAKKEE M, MUL G. Acrylate and propoxy-groups:Contributors to deactivation of Au/TiO2 in the epoxidation of propene[J]. J Catal, 2009,266(2):286-290. doi: 10.1016/j.jcat.2009.06.019

    31. [31]

      QI C, HUANG J, BAO S, SU H, AKITA T, HARUTA M. Switching of reactions between hydrogenation and epoxidation of propene over Au/Ti-based oxides in the presence of H2 and O2[J]. J Catal, 2011,281(1):12-20.  

    32. [32]

      YAO S N, XU L H, WANG J, JING X L, ODOOM-WUBAH T, SUN D D, HUANG J L, LI Q B. Activity and stability of titanosilicate supported Au catalyst for propylene epoxidation with H2 and O2[J]. Mol Catal, 2018,448:144-152. doi: 10.1016/j.mcat.2018.01.039

    33. [33]

      HUYBRECHTS D R C, VAESEN I, LI H X, JACOBS P A. Factors influencing the catalytic activity of titaniumsilicalites in selective oxidations[J]. Catal Lett, 1991,8(2/4):237-244.  

    34. [34]

      LIU C, HUANG J, SUN D, ZHOU Y, JING X, DU M, WANG H, LI Q. Anatase type extra-framework titanium in TS-1:A vital factor influencing the catalytic activity toward styrene epoxidation[J]. Appl Catal A:Gen, 2013,459:1-7. doi: 10.1016/j.apcata.2013.03.013

  • 加载中
    1. [1]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    2. [2]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    3. [3]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    4. [4]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    5. [5]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    6. [6]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    7. [7]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    8. [8]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    9. [9]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    10. [10]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    11. [11]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    12. [12]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    13. [13]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    14. [14]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    15. [15]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    16. [16]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    17. [17]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    18. [18]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

Metrics
  • PDF Downloads(5)
  • Abstract views(1359)
  • HTML views(313)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return