Citation: Shen Yulong, Yang Xiaochun, Liu Lihua. John Edward Lennard-Jones-One of the Founding Fathers of Modern Molecular Orbital Theory[J]. Chemistry, ;2019, 82(4): 379-383. shu

John Edward Lennard-Jones-One of the Founding Fathers of Modern Molecular Orbital Theory

  • Received Date: 11 November 2018
    Accepted Date: 24 December 2018

  • John Edward Lennard-Jones is a eminent British theoretical chemist. He is well-known among scientists for his work on molecular structure, valency and intermolecular forces. Most importantly, Lennard-Jones proposed a mathematically simple model that approximates the interaction between a pair of neutral atoms or molecules, this model is the so-called Lennard-Jones potential (also termed the L-J potential, 6-12 potential); he was the first to use the LCAO MO theory in a manner that connects directly to that which is common today, he have been called one of the founding fathers of modern molecular orbital theory. This paper introduces the life of Lennard-Jones, and describes in detail his scientific research process on Lennard-Jones potential and LCAO MO theory.
  • 加载中
    1. [1]

      W B Jensen. J. Chem. Educat., 2013, 90(6): 802~803. 

    2. [2]

      K Gavroglu, A Simões. Neither physics nor chemistry: a history of quantum chemistry. Cambridge: The MIT Press, 2012, 136~138.

    3. [3]

      S T Keith. Ann. Sci., 1984, 41: 335~357.

    4. [4]

      N F Mott. Biographical Memoirs of Fellows of the Royal Society, 1955, 1: 174~184. 

    5. [5]

      M G Croarken. IEEE Annals of the History of Computing, 1992, 14(4): 10~15. 

    6. [6]

    7. [7]

      J Israelachvili, M Ruths. Langmuir, 2013, 29(31): 9605~9619.

    8. [8]

      S G Brush. Arch. Ration. Mech. Anal., 1970, 39(1): 1~29.

    9. [9]

       

    10. [10]

      U Klein. Tools and Modes of Representation in the Laboratory Sciences. Dordrecht: Springer Science+Business Media B.V., 2001: 179~198.

    11. [11]

      G G Hall. Adv. Quantum Chem., 1991, 22: 1~6.

    12. [12]

       

    13. [13]

      R Lustig. Mol. Phys., 2017, 115(9-12): 1362~1377.

    14. [14]

      R B Shirts. J. Phys. Chem. A, 2018, 122: 8591~8599.

    15. [15]

      Z Guo, J T Kindt. Mol. Simulat., 2018, 44(4): 300~308.

    16. [16]

      V G Baidakov, V M Bryukhanov. Chem. Phys. Lett., 2018, 713: 85~90.

  • 加载中
    1. [1]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    2. [2]

      Chi Zhang Suqi Wu An Liu Wei Zhang Xiao Wei . Application of Team-Based Learning Teaching Method in Inorganic Chemistry Course: the Design Case of Inorganic Chemistry Teaching in Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 89-95. doi: 10.12461/PKU.DXHX202409135

    3. [3]

      Chengtian Liang Boyuan Zheng Ning Fang . 第38届中国化学奥林匹克(初赛)配位化学试题解析. University Chemistry, 2025, 40(8): 394-400. doi: 10.12461/PKU.DXHX202410054

    4. [4]

      Dongju Zhang Rongxiu Zhu . Construction of Ideological and Political Education in Quantum Chemistry Course: Several Teaching Cases to Reveal the Universal Connection of Things. University Chemistry, 2024, 39(7): 272-277. doi: 10.3866/PKU.DXHX202311032

    5. [5]

      Guoxian Zhu Jing Chen Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027

    6. [6]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    7. [7]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    8. [8]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    9. [9]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    10. [10]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    11. [11]

      Xueli Mu Lingli Han Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057

    12. [12]

      Wenkai Chen Yunjia Shen Xiangmeng Kong Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018

    13. [13]

      Jiying Liu Zehua Li Wenjing Zhang Donghui Wei . Molecular Orbital and Nucleus-Independent Chemical Shift Calculations for C6H6 and B12H122-: A Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 186-192. doi: 10.12461/PKU.DXHX202406085

    14. [14]

      Jinghan Xu Yang Wang Donghui Wei . Drawing Cross-Sectional Contour Maps of π Molecular Orbitals. University Chemistry, 2025, 40(3): 23-29. doi: 10.12461/PKU.DXHX202403023

    15. [15]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    16. [16]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    17. [17]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    18. [18]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    19. [19]

      Fan Yang Yanhong Bai Pin Gao Xinhua Duan Yunchuan Xie . Exploration and Practice of Teaching Reform in Polymer Chemistry Experiment Course. University Chemistry, 2025, 40(10): 63-71. doi: 10.12461/PKU.DXHX202412013

    20. [20]

      Yu Ding Siming Li Ying Chen Yawei Li Shaomin Shuang . Exploring the Integration of Ideological and Political Education in English-Taught Polymer Chemistry Courses. University Chemistry, 2025, 40(11): 160-166. doi: 10.12461/PKU.DXHX202412091

Metrics
  • PDF Downloads(35)
  • Abstract views(4035)
  • HTML views(1317)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return