Citation: Hu Weiyue, Song Xiuyan, Bian Zhaoquan, Liu Fusheng. Application of Deep Eutectic Solvents in Organic Reactions[J]. Chemistry, ;2018, 81(4): 319-325. shu

Application of Deep Eutectic Solvents in Organic Reactions

  • As a low-temperature eutectic mixture, deep eutectic solvent (DES) with some remarkable properties such as low cost, negligible vapor pressure, non-toxicity, non-flammablility, biodegradablity, adjustablility and recyclability, which makes DES gradually become a new type of green solvent or catalyst. In this paper, the composition and classification of DES were introduced, and the applications of DES as a solvent or catalyst in some organic reactions, including addition, substitution, coupling, condensation, cyclization, esterification, multi-component and depolymerization reactions, were reviewed. Finally, the prospect of DES in organic reactions is forecasted.
  • 加载中
    1. [1]

      A P Abbott, G Capper, D L Davies et al. Chem. Commun., 2003, 9(1):70~71. 

    2. [2]

      A P Abbott, T K El, G Frisch et al. Phys. Chem. Chem. Phys., 2009, 11(21):4269~4277. 

    3. [3]

      M C Bubalo, N ćurko, M Tomašević et al. Food Chem., 2016, 200:159~166. 

    4. [4]

      E Durand, J Lecomte, P Villeneuve. Eur. J. Lipid Sci. Tech., 2013, 115(4):379~385. 

    5. [5]

      H R Jhong, S H Wong, C C Wan et al. Electrochem. Commun., 2009, 11(1):209~211. 

    6. [6]

      Q QXiong, J P Tu, X Ge et al. J. Power Sources, 2015, 274(274):1~7. 

    7. [7]

      D Shahabi, H Tavakol. J. Mol. Liq., 2016, 220:324~328. 

    8. [8]

      F Keshavarzipour, H Tavakol. Catal. Lett., 2015, 145(4):1062~1066. 

    9. [9]

      H G Dai, J T Li, T S Li. Synth. Commun., 2006, 36(13):1829~1835. 

    10. [10]

      M Bakavoli, H Eshghi, M Rahimizadeh et al. Res. Chem. Intermediat., 2015, 41(6):3497~3505. 

    11. [11]

      J N Sangshetti, N D Kokare, S A Kotharkar et al. Monatsh. Chem., 2008, 139(2):125~127. 

    12. [12]

      A F Mohammed, N D Kokare, J N Sangshetti et al. J. Korean Chem. Soc., 2007, 51(5):418~422. 

    13. [13]

      J N Sangshetti, N D Kokare, S A Kotharkara et al. J. Chem. Sci., 2008, 120(5):463~467. 

    14. [14]

      A Shaabani, S E Hooshmand. Tetrahed. Lett., 2016, 57(3):310~313. 

    15. [15]

      P Zamani, A R Khosropour. Green Chem., 2016, 18(24):6450~6455. 

    16. [16]

      F Shi, A X Dai, S Zhang et al. Eur. J. Med. Chem., 2011, 42(26):953~960.

    17. [17]

      N Azizi, M Edrisi. Micropor. Mesopor. Mater., 2017, 240:130~136. 

    18. [18]

      M A Pinto Martins, G Caneppele Paveglio, L Valvassori Rodrigues et al. New J. Chem., 2016, 40:5989~5992. 

    19. [19]

      A Shaabani, S E Hooshmand, M T Nazeri et al. Tetrahed. Lett., 2016, 57(33):3727~3730. 

    20. [20]

      R Mancuso, A Maner, L Cicco et al. Tetrahedron, 2016, 72(29):4239~4244. 

    21. [21]

      U N Yadav, G S Shankarling. J. Mol. Liq., 2014, 195:188~193. 

    22. [22]

      J Flores-Ferrándiz, R Chinchilla. Tetrahedron-asymmetry, 2017, 28(2):302~306. 

    23. [23]

       

    24. [24]

      Q Wang, X Yao, Y Geng et al. Green Chem., 2015, 17(4):2473~2479. 

    25. [25]

      R M Musale, S R Shukla. Int. J. Plastics Tech., 2016, 20(1):106~120. 

    26. [26]

      X Marset, J M Perez, D J Ramon. Green Chem., 2016, 18(3):826~833. 

    27. [27]

      P L Pant, G S Shankarling. Chemistryselect, 2017, 2(17):4892~4898. 

    28. [28]

      M K Miraki, J A Mehraban, E Yazdani et al. J. Mol. Liq., 2017, 234:129~132. 

    29. [29]

      X Marset, A Khoshnood, L Sotorrios et al. ChemCatChem, 2016, 9(7):1269~1275. 

    30. [30]

      A Wang, P Xing, X Zheng et al. RSC Adv., 2015, 5(73):59022~59026. 

    31. [31]

      A Kumar, R D Shukla, D Yadav et al. RSC Adv., 2015, 5(64):52062~52065. 

    32. [32]

      P H Tran, H T Nguyen, P E Hansen et al. RSC Adv., 2016, 6(43):37031~37038. 

    33. [33]

      P H Tran, T N Hai. RSC Adv., 2016, 6(100):98365~98368. 

    34. [34]

      N Azizi, M Edrisi. Monatsh. Chem., 2015, 146(10):1695~1698. 

    35. [35]

      M Tiecco, R Germani, F Cardellini. RSC Adv., 2016, 6:43740~43747. 

    36. [36]

      R Martinez, L Berbegal, G Guillena et al. Green Chem., 2016, 18(6):1724~1730. 

    37. [37]

      F Keshavarzipour, H Tavakol. J. Iran. Chem. Soc., 2016, 13(1):149~153. 

    38. [38]

      Y Pan, M A Alam, Z Wang et al. Bioresource Technol., 2016, 220:543~548. 

    39. [39]

      J Cao, B Qi, J Liu et al. RSC Adv., 2016, 6(26):21612~21616. 

    40. [40]

      R L Yu, J L Yu, W Ma et al. Korean J. Chem. Eng., 2016, 33(8):2337~2341. 

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    4. [4]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    5. [5]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    6. [6]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    7. [7]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    8. [8]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    9. [9]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    10. [10]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    11. [11]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    12. [12]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    13. [13]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    14. [14]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    15. [15]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    16. [16]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    17. [17]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    18. [18]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    19. [19]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    20. [20]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

Metrics
  • PDF Downloads(155)
  • Abstract views(8972)
  • HTML views(4020)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return