Citation: Peng Rui, Zhang Jingjing, Du Chungui, Hua Yating. Progress in Preparation and Controlled Release Technology of Thermo-Sensitive Antibacterial Hydrogels[J]. Chemistry, ;2020, 83(1): 10-16. shu

Progress in Preparation and Controlled Release Technology of Thermo-Sensitive Antibacterial Hydrogels

  • Corresponding author: Du Chungui, chunguidu@163.com
  • Received Date: 15 August 2019
    Accepted Date: 20 October 2019

Figures(7)

  • Thermo-sensitive hydrogels are a class of intelligent polymer gels that undergo a phase change by sensing temperature changes. Preparation of antibacterial hydrogels by loading antibacterial agents or by antibacterial monomers is a hot spot in the fields of drug controlled release, tissue engineering and biological immunity in recent years. In this paper, the research progress in physical crosslinking and chemical crosslinking preparation technology of temperature-sensitive antibacterial hydrogels are reviewed. The control technology, such as the pore diameter, the preparation material and drug loading mode regulation is described. And the application of thermo-sensitive antibacterial hydrogel in controlled release technology, and especially the application prospect in the field of biomass materials are prospected.
  • 加载中
    1. [1]

      Scarpa J S, Mueller D D, Klotz I M. J. Am. Chem. Soc., 1967, 89(24):6024~6030. 

    2. [2]

      Koetting M C, Peters J T, Steichen S D, et al. Mater. Sci. Eng., 2015, 93:1~49. 

    3. [3]

      Wei J, Yu H, Liu H, et al. J. Mater. Sci., 2018, 53(17):12056~12064. 

    4. [4]

       

    5. [5]

      Salick D A, Kretsinger J K, Pochan D J, et al. J. Am. Chem. Soc., 2007, 129(47):14793~14799. 

    6. [6]

       

    7. [7]

      Shen J S, Xu B. Chem. Commun., 2011, 47:2577~2579. 

    8. [8]

      Archana D, Dutta J, Dutta P K. Int. J. Biol. Macromol., 2013, 57:193~203. 

    9. [9]

      Escobedo-Lozano A Y, Domard A, Velazquez C A, et al. Carbohydr. Polym., 2015, 115:707~714. 

    10. [10]

      Pentlavalli S, Chambers P, Sathy B N, et al. Macromol. Biosci., 2017, 17:1700118. 

    11. [11]

      Doring A, Birnbaum W, Kuckling D. Chem. Soc. Rev., 2013, 42(17):7391~420. 

    12. [12]

      Liow S S, Dou Q, Kai D, et al. Small, 2017, 13(7):1603404. 

    13. [13]

      Luckanagul J A, Pitakchatwong C, Bhuket P R N, et al. Carbohydr. Polym., 2018, 181:1119~1127. 

    14. [14]

      Ma C, Lu W, Yang X, et al. Adv. Funct. Mater., 2018, 28(7):1704568. 

    15. [15]

       

    16. [16]

      Chenite A, Chaput C, Wang D, et al. Biomaterials, 2000, 21(21):2155~2161. 

    17. [17]

       

    18. [18]

      Ahmed E M. J. Adv. Res., 2015, 6(2):105~121. 

    19. [19]

       

    20. [20]

      Yang B, Tang S, Ma C, et al. Nat. Commun., 2017, 8(1):2240. 

    21. [21]

       

    22. [22]

      Wei Z, Duan L, Zhang B, et al. Polymer, 2017, 112:333~341. 

    23. [23]

      Cheng W, Chen Y, Teng L, et al. J. Colloid Interf. Sci., 2018, 513:314~323. 

    24. [24]

      Kamoun E A, Kenawy E R S, Tamer T M, et al. Arab. J. Chem., 2015, 8(1):38~47. 

    25. [25]

      Sung J H, Hwang M R, Kim J O, et al. Int. J. Pharm., 2010, 392(1-2):232~240. 

    26. [26]

      Noori S, Kokabi M, Hassan Z M. J. Appl. Polym. Sci., 2018, 135(21):46311. 

    27. [27]

      Fullenkamp D E, Rivera J G, Gong Y K, et al. Biomaterials, 2012, 33(15):3783~3791. 

    28. [28]

      Peng N, Wang Y, Ye Q, et al. Carbohydr. Polym., 2016, 137:59~64. 

    29. [29]

       

    30. [30]

      Xu F J, Zhu Y, Liu F S. Bioconjug. Chem., 2010, 21(3):456~464. 

    31. [31]

       

    32. [32]

       

    33. [33]

      Jalalvandi E, Shavandi A. J. Mech. Behav. Biomed., 2019, 90:191~201. 

    34. [34]

      Wang Q, Feng Y, He M, et al. Macromol. Mater. Eng., 2018, 303:1700590. 

    35. [35]

      Roy S, Banerjee A. Soft Matter, 2011, 7(11):5300~5308. 

    36. [36]

      Bae Y H, Okano T, Hsu R, et al. Macromol. Rapid Commun., 1987, 8(10):481~485. 

    37. [37]

      Iseult L, Paolo D G, Dawson K A. J. Phys. Chem. B, 2005, 109(13):6257~6261. 

    38. [38]

      Pong F Y, Michelle L, Bell J R, et al. Langmuir, 2006, 22(8):3851~3857. 

    39. [39]

      Ramanan R M, Chellamuthu P, Tang L, et al. Biotechnol. Prog., 2010, 22(1):118~125. 

    40. [40]

      Mukai S R, Nishihara H, Shichi S, et al. Chem. Mater., 2004, 16(24):4987~4991. 

    41. [41]

       

    42. [42]

       

    43. [43]

       

    44. [44]

      Kojarunchitt T, Baldursdottir S, Dong Y D, et al. Eur. J. Pharm. Biopharm., 2015, 89:74~81. 

    45. [45]

      Bardajee G R, Hooshyar Z. J. Polym. Res., 2017, 24(3):49. 

    46. [46]

       

    47. [47]

      Giano M C, Ibrahim Z, Medina S H, et al. Nat. Commun., 2014, 5:4095. 

    48. [48]

       

    49. [49]

      Patrick C, Christine V. Pharm. Res., 2006, 23(7):1417~1450. 

    50. [50]

      Moghimi S M, Hunter A C, Murray J C. FASEB J., 2005, 19(3):311~330. 

    51. [51]

      Ji Q X, Zhao Q S, Deng J, et al. J. Mater. Sci., 2010, 21(8):2435~2442. 

    52. [52]

       

    53. [53]

      Gao L, Sun Q, Wang Y, et al. Polym. Adv. Technol., 2017, 28(1):35~40. 

    54. [54]

      Pakulska M M, Miersch S, Shoichet M S. Science, 2016, 351(6279):4750. 

    55. [55]

      De Vries M E, Boddé H E, Busscher H J, et al. J. Biomed. Mater. Res., 1988, 22(11):1023~1032. 

    56. [56]

      Dong Z, Le X, Li X, et al. Appl. Catal. B, 2014, 158:129~135. 

    57. [57]

       

    58. [58]

       

    59. [59]

      Ganguly S, Dash A K. Int. J. Pharm., 2003, 276(1-2):83~92.

    60. [60]

      Zhao J, Guo B L, Ma P X. RSC Adv., 2014, 4(34):17736~17742. 

    61. [61]

       

    62. [62]

      Wei J, Chen Y, Liu H, et al. Ind. Crops Products, 2016, 92:227~235. 

    63. [63]

      Yu H, Du C, Huang Q, et al. Bioresources, 2018, 13(2):2658~2669. 

    64. [64]

      Yu H, Du C, Liu H, et al. Bioresources, 2017, 12(4):8390~8401. 

    65. [65]

       

    66. [66]

       

    67. [67]

       

  • 加载中
    1. [1]

      Qiuping Liu Yongxian Fan Wenxian Chen Mengdi Wang Mei Mei Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083

    2. [2]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    3. [3]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    4. [4]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    5. [5]

      Yufan Pan Xue Ding Jiayu Lin Haiting Wu Hairong Huang Cuixue Chen Meiling Ye . Oil Cosmetics, Charming Chemistry: A Gradient Science Popularization Scheme for Cream Cosmetic Preparation. University Chemistry, 2025, 40(4): 382-389. doi: 10.12461/PKU.DXHX202406078

    6. [6]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    7. [7]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    8. [8]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    9. [9]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    10. [10]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    11. [11]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    12. [12]

      Haoxiang Zhang Zhihan Zhao Yongchen Jin Zhiqiang Niu Jinlei Tian . Synthesis of an Efficient Absorbent Gel: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(11): 251-258. doi: 10.12461/PKU.DXHX202401084

    13. [13]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    14. [14]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    15. [15]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    16. [16]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    17. [17]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    18. [18]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    19. [19]

      Jingjie Tang Luying Xie Jiayu Liu Shangyu Shi Xinyu Sun Jiayang Lin Qikun Yang Chuan'ang Yu Zecheng Wang Yingying Wang Zengyang Xie . Efficient Rapid Synthesis and Antibacterial Activities of Tosylhydrazones: A Recommended Innovative Chemistry Experiment for Undergraduate Medical University. University Chemistry, 2024, 39(3): 316-326. doi: 10.3866/PKU.DXHX202309091

    20. [20]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

Metrics
  • PDF Downloads(43)
  • Abstract views(2379)
  • HTML views(675)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return