Citation: Sun Ming, Lu Xin, Li Zheng, Zhang Lanhe, Zhang Haifeng. Progress in the Role of Extracellular DNA in the Biofilm Construction[J]. Chemistry, ;2018, 81(2): 134-138. shu

Progress in the Role of Extracellular DNA in the Biofilm Construction

Figures(1)

  • Biofilm is referred to the bacteria forming the special microbial aggregations in order to adapt to the change of external environment. The biofilm process is an important branch of water biochemical treatment technology, which is becoming more and more attentive in the field of environmental engineering. This article summarized studies on the role of extracellular DNA in the process of biofilm forming. Firstly, the classification of extracellular polymeric substance(EPS) and eDNA distribution in EPS were described. Further, it illuminated that QS(quorum sensing)-mechanism mediated the release of eDNA in the bacterial cells. In order to provide more detailed information about the role of eDNA in the process of biofilm forming, the eDNA-mediated performance in the adhesion and aggregation of bacterial was revealed according to XDLVO theory. Moreover, the combinative behavior of eDNA with proteins and polysaccharides were also discussed. Lastly, the future trends in the influence of eDNA on the process of biofilm forming in the coming years were addressed.
  • 加载中
    1. [1]

       

    2. [2]

      L Hall-Stoodley, J W Costerton, P Stoodley. Nat. Rev. Microbiol., 2004, 2(2): 95~108. 

    3. [3]

      G V Tetz, N K Artemenko, V V Tetz. Antimicrob. Agents Chemother., 2009, 53(3): 1204~1209. 

    4. [4]

      T Das, S Sehar, M Manefield. Environ. Microbiol. Rep., 2013, 5(6): 778~786. 

    5. [5]

      I Ramos, L E P Dietrich, A Pricewhelan et al. Res. Microbiol., 2010, 161(3): 187~191. 

    6. [6]

      M Okshevsky, V R Regina, R L Meyer. Curr. Opin. Biotechnol., 2015, 33: 73~80. 

    7. [7]

      C S Laspidou, B E Rittmann. Water Res., 2002, 36(11): 2711~2720. 

    8. [8]

      F Lü, J W Wang, P J He et al. Biotechnol. Biofuels, 2016, 9(1): 1~14. 

    9. [9]

      G H Yu, P J He, L M Shao et al. Environ. Sci. Technol., 2008, 42(21): 7944~7949. 

    10. [10]

      B B Wang, Q Chang, D C Peng et al. Water Res., 2014, 64(7): 53~60. 

    11. [11]

      X YLi, J Xu, H Q Yu. Chem. Eng. J., 2016, 303: 627~635. 

    12. [12]

      H Liu, H H Fang. J. Biotechnol., 2002, 95(3): 249~256. 

    13. [13]

      P Zhang, F Fang, Y P Chen et al. Chemosphere, 2014, 117: 59~65. 

    14. [14]

      B Q Liao, D G Allen, I G Droppo et al. Water Res., 2001, 35(2): 339~350. 

    15. [15]

       

    16. [16]

       

    17. [17]

    18. [18]

      V C Thomas, L E Hancock. Int. J. Artif. Organs, 2009, 32(9): 537~544. 

    19. [19]

      H K Kuramitsu, V Trapa. J. Gen. Microbiol., 1984, 130(10): 2497~2500. 

    20. [20]

      H L Hamilton, N M Dommguez, K J Schwartz et al. Mol. Microbiol., 2005, 55(6): 1704~1721. 

    21. [21]

      K M Yeon, W S Cheong, S H Oh et al. Environ. Sci. Technol., 2009, 43(2): 380~385. 

    22. [22]

      Y C Li, J P Lv, C Zhong et al. J. Environ. Sci., 2014, 26(8): 1615~1621. 

    23. [23]

      M Allesen-Holm, K B Barken, L Yang et al. Mol. Microbiol., 2006, 59(4): 1114~1128.

    24. [24]

      J Gödeke, K Paul, J Lassak et al. ISME J., 2011, 5(4): 613~626. 

    25. [25]

      T Das, P K Sharma, H J Busscher et al. Appl. Environ. Microbiol., 2010, 76(10): 3405~3408. 

    26. [26]

      V C Thomas, L R Thurlow, D Boyle et al. J. Bacteriol., 2008, 190(16): 5690~5698. 

    27. [27]

      K M Nielsen, P J Johnsen, D Bensasson et al. Environ. Biosaf. Res., 2007, 6(1/2): 37~53. 

    28. [28]

      J B Kaplan, S Jabbouri, I Sadovskaya. Res. Microbiol., 2011, 162(5): 535~541. 

    29. [29]

      T Das, B P Krom, H C Van der Mei et al. Soft Matter, 2011, 7(6): 2927~2935. 

    30. [30]

      Z Qin, Y Ou, L Yang et al. J. Microbiol., 2007, 153: 2083~2092. 

    31. [31]

      S Vilain, J M Pretorius, J Theron et al. Appl. Environ. Microbiol., 2009, 75(9): 2861~2868. 

    32. [32]

      C B Whitchurch, T Tolker-Nielsen, P C Ragas et al. Science, 2002, 295: 1487. 

    33. [33]

      J W Osterton, P S Stewart, E P Greenberg. Science, 1999, 284(5418): 1318~1322. 

    34. [34]

      L R Johnson. Theor. Biol., 2008, 251(1): 24~34. 

    35. [35]

      E E Mann, K C Rice, B R Boles et al. PloS One, 2009, 4(6): e5822. 

    36. [36]

      M Lappann, H Claus, T Van Alen et al. Mol. Microbiol., 2010, 75(6): 1355~1371. 

    37. [37]

      L H Zhao, X L Qu, M J Zhang et al. Bioresour. Technol., 2016, 214: 355. 

    38. [38]

      V T Nguyen, T W R Chia, M S Turner et al. J. Microbiol. Methods, 2011, 86(1): 89~96. 

    39. [39]

      T Das, P K Sharma, B P Krom et al. Langmuir, 2011b, 27(16): 10113~10118. 

    40. [40]

      C Toutain, N Caizza, M Zegans et al. Res. Microbiol., 2007, 158(5): 471~477. 

    41. [41]

      S M Hinsa, M Espinosa-Urgel, J L Ramos et al. Mol. Microbiol., 2003, 49(4): 905~918. 

    42. [42]

      W M Dunne. Clin. Microbiol. Rev., 2002, 15: 155~166. 

    43. [43]

      J M Ghigo. Nature, 2001, 412(6845): 442~445. 

    44. [44]

      G A O'Toole, R Kolter. Mol. Microbiol., 1998, 28(3): 449~461. 

    45. [45]

      P K Sharma, K H Rao. Colloids Surf. B, 2003, 29(1): 21~38. 

    46. [46]

      C J Van Oss, M Dekker. Powder Technol., 1995, 82: 209~213. 

    47. [47]

      V R Regina, A R Lokanathan, J J Modrzyn et al. PloS One, 2014, 9(8): e105033. 

    48. [48]

      J Azeredo, J Visser, R Oliveira. Colloids Surf. B, 1999, 14: 141~148. 

    49. [49]

      H Waheed, I Hashmi, S J Khan et al. Int. Biodeterior. Biodegrad., 2016, 113: 66~73. 

    50. [50]

      M Harmsen, M Lappann, S Knøchel et al. Appl. Environ. Microbiol., 2010, 76(7): 2271~2279. 

    51. [51]

      K C Rice, E E Mann, J L Endres et al. PNAS, 2007, 104(19): 8113~8118. 

    52. [52]

      H H Liu, Y R Yang, X C Shen et al. Curr. Microbiol., 2008, 57(2): 139~144. 

    53. [53]

      J J T M Swartjes, T Das, S Sharifi et al. Adv. Funct. Mater., 2013, 23(22): 2843~2849. 

    54. [54]

      S D Goodman, K P Obergfell, J A Jurcisek et al. Mucosal Immunol., 2011, 4(6): 625~637. 

    55. [55]

      F C Petersen, L Tao, A A Scheie. J. Bacteriol., 2005, 187(13): 4392~4400. 

    56. [56]

      M J Huseby, A C Kruse, J Digre et al. PNAS, 2010, 107(32): 14407~14412. 

    57. [57]

      S Liao, M I Klein, K P Heim et al. J. Bacteriol., 2014, 196(13): 2355~2366. 

    58. [58]

      W Hu, L Li, S Sharma et al. PloS One, 2012, 7(12): e51905. 

  • 加载中
    1. [1]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    2. [2]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    3. [3]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    4. [4]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    5. [5]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    6. [6]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    7. [7]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    8. [8]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    9. [9]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    10. [10]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    11. [11]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    12. [12]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    13. [13]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    14. [14]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    15. [15]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    16. [16]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    17. [17]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    18. [18]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    19. [19]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    20. [20]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

Metrics
  • PDF Downloads(24)
  • Abstract views(1479)
  • HTML views(334)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return