Citation: Xueli Li, Jiping Liu, Zhenwen Sun, Weiwei Yang, Nianhua Li, Kunpeng Song. Research Progress in Detection Methods of Acetone Peroxide Explosives[J]. Chemistry, ;2021, 84(5): 411-418, 410. shu

Research Progress in Detection Methods of Acetone Peroxide Explosives

  • Corresponding author: Jiping Liu, liujp@bit.edu.cn
  • Received Date: 8 August 2020
    Accepted Date: 30 November 2020

Figures(5)

  • Terrorist attacks are one of the major hidden dangers to security in the world today. Peroxide explosives are often used by criminals because of their difficulty in being detected by conventional means. Acetone peroxide explosives are commonly used explosives by terrorists among them. This article mainly summarizes the different detection methods of acetone peroxide explosives in the past 20 years, mainly including traditional detection technologies such as fluorescence detection technology and mass spectrometry, chromatography, Raman spectroscopy and other spectral technologies, as well as electrochemical methods, chemical colorimetry, physical sensors and new biological immune detection technology in the field of detection of acetone peroxide explosives.
  • 加载中
    1. [1]

      Tan S, Sagara Y, Liu Y, et al. J. Cell Biol., 1998, 141: 1423~1432. 

    2. [2]

      McDonnell G, Russell A D. Clin. Microbiol. Rev., 1999, 12: 147. 

    3. [3]

      Roach J, Ekblom P, Flynn R. Secur. J., 2005, 18: 7~25.

    4. [4]

      Ferris K F, Bartlett R J. J. Am. Chem. Soc., 1992, 114: 8302~8303. 

    5. [5]

      Ladbeck S R, Vogel M, Karst U. Anal. Bioanal. Chem., 2006, 386: 559~565. 

    6. [6]

      Wang J. Electroanalysis, 2007, 19: 415~423. 

    7. [7]

      Sanchez J C, Trogler W C. J. Mater. Chem., 2008, 18: 3143~3156. 

    8. [8]

       

    9. [9]

       

    10. [10]

       

    11. [11]

       

    12. [12]

       

    13. [13]

       

    14. [14]

       

    15. [15]

      Burks R M, Hage D S. Anal. Bioanal. Chem., 2009, 395: 301~313. 

    16. [16]

       

    17. [17]

       

    18. [18]

      Germain M E, Knapp M J. Inorg. Chem., 2008, 47: 9748~9750. 

    19. [19]

      Garreffi B P, Guo M, Tokranova N, et al. Sens. Actuat. B, 2018, 276: 466~471. 

    20. [20]

      Xu W, Fu Y, Gao Y, et al. Chem. Commun., 2015, 51: 10868~10870. 

    21. [21]

      Gredilla C P, Calvo G J, Cuevas J V, et al. Chem. Eur. J, 2017, 23: 13973~13979. 

    22. [22]

      Calvo G J, Gredilla C P, Llorente I M, et al. J. Mater. Chem. A, 2018, 6: 4416~4423. 

    23. [23]

      Malashikhin S, Finney N S. J. Am. Chem. Soc., 2008, 130: 12846~12847. 

    24. [24]

      Ladbeck S R, Kolla P, Karst U. Analyst, 2002, 127: 1152~1154. 

    25. [25]

      Sella E, Shabat D. Chem. Commun., 2008, 44: 5701~5703.

    26. [26]

      Tarvin M, McCord B, Mount K, et al. J. Chromatogr. A, 2010, 1217: 7564~7572. 

    27. [27]

      Xiong W, Zhu Q, Gong Y, et al. Anal. Chem., 2018, 90: 4273~4276. 

    28. [28]

      Almenar E, Costero A M, Gaviña P, et al. Roy. Soc. Open Sci., 2018, 5: 171787. 

    29. [29]

      Zhu Q H, Zhang G H, Yuan W L, et al. Chem. Commun., 2019, 55: 13661~13664. 

    30. [30]

      Schulte-Ladbeck R, Kolla P, Karst U. Anal. Chem., 2003, 75: 731~735. 

    31. [31]

      Schulte-Ladbeck R, Karst U. Chromatographia, 2003, 57: S61~S5.

    32. [32]

      Schulte-Ladbeck R, Edelmann A, Quintás G, et al. Anal. Chem., 2006, 78: 8150~8155. 

    33. [33]

      Tarvin M, McCord B, Mount K, et al. Forensic Sci. Int., 2011, 209: 166~162. 

    34. [34]

      Johns C, Hutchinson J P, Guijt R M, et al. Anal. Chim. Acta, 2015, 876: 91~97. 

    35. [35]

      Andrasko J, Andrasko L L, Dahlen J, et al. J. Forensic Sci., 2017, 62: 1022~1027. 

    36. [36]

      Buttigieg G A, Knight A K, Denson S, et al. Forensic Sci. Int., 2003, 135: 53~59. 

    37. [37]

      Wilson P F, Prince B J, McEwan M J. Anal. Chem., 2006, 78: 575~579. 

    38. [38]

      Rodriguez C I, Chen H, Cooks R G. Chem. Commun., 2006, 42: 953~955.

    39. [39]

      Mullen C, Irwin A, Pond B V, et al. Anal. Chem., 2006, 78: 3807~3814. 

    40. [40]

      Rodríguez C I, Soto H H, Chen H, et al. Anal. Chem., 2008, 80: 1512~1519. 

    41. [41]

      Correa N D, Perez M J, Zacca J J, et al. Propell. Explos. Pyrot., 2017, 42: 370~375. 

    42. [42]

      Rowell F, Seviour J, Lim A Y, et al. Forensic Sci. Int., 2012, 221: 84~91. 

    43. [43]

      Zhou Q, Peng L, Jiang D, et al. Sci. Rep., 2015, 5: 10659. 

    44. [44]

       

    45. [45]

      Gamble S C, Campos L C, Morgan R M. Environ. Forensics, 2017, 18: 50~61. 

    46. [46]

      Costa C, van Es E M, Sears P, et al. Propell. Explos. Pyrot., 2019, 44: 1021~1027. 

    47. [47]

      Butt N R, Nilsson M, Jakobsson A, et al. IEEE Geosci. Remote S., 2011, 8: 517~521. 

    48. [48]

      Vodochodsky O, Jalovy Z, Matyas R, et al. Appl. Spectrosc., 2019, 73: 195~202. 

    49. [49]

      Eliasson C, Macleod N A, Matousek P. Anal. Chem., 2007, 79: 8185~8189. 

    50. [50]

      Tsiminis G, Chu F, Warren-Smith S, et al. Sensors, 2013, 13: 13163~13177. 

    51. [51]

      Oxley J, Smith J, Brady J, et al. Appl. Spectrosc., 2008, 62: 906~915. 

    52. [52]

      Rabenecker P, Pinkwart K. Propell. Explos. Pyrot., 2009, 34: 274~279. 

    53. [53]

      Parajuli S, Miao W. Anal. Chem., 2013, 85: 8008~8015. 

    54. [54]

      Lu D, Cagan A, Munoz R A, et al. Analyst, 2006, 131: 1279~1281. 

    55. [55]

      Munoz R A, Lu D, Cagan A, et al. Analyst, 2007, 132: 560~565. 

    56. [56]

      Benedet J, Lu D, Cizek K, et al. Anal. Bioanal. Chem., 2009, 395: 371~376. 

    57. [57]

      Banerjee S, Mohapatra S K, Misra M, et al. Nanotechnology, 2009, 20: 075502. 

    58. [58]

      Xie Y, Cheng I F. Microchem. J., 2010, 94: 166~170. 

    59. [59]

      Mbah J C, Steward S, Egiebor N O. Sens. Actuat. B, 2016, 222: 693~697. 

    60. [60]

      Cui Y, Jin Y, Chen X, et al. ACS Sensors, 2018, 3(8): 1439~1444. 

    61. [61]

      Bohrer F I, Colesniuc C N, Park J, et al. J. Am. Chem. Soc., 2008, 130: 3712~3713. 

    62. [62]

      Chu Y, Mallin D, Amani M, et al. Sens. Actuat. B, 2014, 197: 376~384. 

    63. [63]

      Lichtenstein A, Havivi E, Shacham R, et al. Nat. Commun., 2014, 5: 4195. 

    64. [64]

      Elbasuney S. Trends Anal. Chem., 2018, 102: 272~279. 

    65. [65]

      zer A, Durmazel S, Erçaǧ E, et al. Sens. Actuat. B, 2017, 247: 98~107. 

    66. [66]

      Bagheri N, Khataee A, Hassanzadeh J, et al. J. Hazard. Mater., 2018, 360: 233~242. 

    67. [67]

      Peters K L, Corbin I, Kaufman L M, et al. Anal. Methods, 2015, 7: 63~70. 

    68. [68]

      Eren S, Uzer A, Can Z, et al. Analyst, 2010, 135: 2085~2091. 

    69. [69]

      Lin H, Suslick K S. J. Am. Chem. Soc., 2010, 132: 15519~15521. 

    70. [70]

      Xu M, Bunes B R, Zang L. ACS Appl. Mater. Interf., 2011, 3: 642~647. 

    71. [71]

       

    72. [72]

       

    73. [73]

      Lock J P, Geraghty E, Kagumba L C, et al. Thin Solid Films, 2009, 517: 3584~3587. 

    74. [74]

      Lubczyk D, Siering C, Lörgen J, et al. Sens. Actuat. B, 2010, 143: 561~566. 

    75. [75]

      Duy W S D, Hackett B E, Nadeau S C, et al. IEEE Sens. J., 2013, 13: 4780~4785. 

    76. [76]

      Kumar D, Gautam S, Kumar S, et al. Spectrochim. Acta A, 2017, 176: 47~51. 

    77. [77]

      Divin Y, Poppe U, Gubankov V N, et al. IEEE Sens. J., 2008, 8: 750~757. 

    78. [78]

      Climent E, Groninger D, Hecht M, et al. Chem. Eur. J, 2013, 19(13): 4117~4122. 

    79. [79]

      Walter M A, Pfeifer D, Kraus W, et al. Langmuir, 2010, 26: 15418~15423. 

  • 加载中
    1. [1]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    2. [2]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    3. [3]

      Xiqing Liang Tian Zhao Jiawei Li Haohui Tan Hai Chen Liyan Zeng . Pentaerythritol’s Journey of Making Friends. University Chemistry, 2025, 40(10): 175-185. doi: 10.12461/PKU.DXHX202412009

    4. [4]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    5. [5]

      Huaihao CHENLingwen ZHANGYukun CHENJianjun ZHANG . A water-stable metal-organic framework probe for Al3+/Ga3+/In3+ detection. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2601-2608. doi: 10.11862/CJIC.20250184

    6. [6]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    7. [7]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    8. [8]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    9. [9]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    10. [10]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    11. [11]

      Yuhang ZhangYi LiYuehan CaoYingjie ShuaiYu ZhouYing Zhou . Regulating the formation type by Ir of intermediates to suppress product overoxidation in photocatalytic methane conversion. Acta Physico-Chimica Sinica, 2026, 42(2): 100173-0. doi: 10.1016/j.actphy.2025.100173

    12. [12]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    13. [13]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    14. [14]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    15. [15]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    16. [16]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    17. [17]

      Kangjuan ChengChunxiao LiuYoupeng WangQiu JiangTingting ZhengXu LiChuan Xia . Design of noble metal catalysts and reactors for the electrosynthesis of hydrogen peroxide. Acta Physico-Chimica Sinica, 2025, 41(10): 100112-0. doi: 10.1016/j.actphy.2025.100112

    18. [18]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    19. [19]

      Fan FanHao XiuYuting WangYongpeng CuiYajun Wang . Construction of NH2-MIL-125/Na-doped g-C3N4 composite S-scheme heterojunction and its performance in photocatalytic hydrogen peroxide production. Acta Physico-Chimica Sinica, 2026, 42(2): 100143-0. doi: 10.1016/j.actphy.2025.100143

    20. [20]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

Metrics
  • PDF Downloads(30)
  • Abstract views(5921)
  • HTML views(1188)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return