Citation: Ren Shoulong, Tang Bo, Dai Yuanzhe, Ji Li. Research Progress in High Emissivity Ceramic Materials[J]. Chemistry, ;2020, 83(12): 1113-1121. shu

Research Progress in High Emissivity Ceramic Materials

  • Corresponding author: Tang Bo, tangbo@cczu.edu.cn
  • Received Date: 31 July 2020
    Accepted Date: 1 September 2020

Figures(5)

  • High-emissivity ceramic materials have received more and more attention because of their high performances. A higher heating efficiency and subsequent energy saving effect can be achieved when they are adopted in the industry furnaces. These materials not only improve the heating rate, but also endow an even heat distribution in the furnace. The advantages of these materials include the high infrared emissivity, stable chemical properties and prominent thermal stability. Based on the mechanism of infrared radiation, the research progress in several high-emissivity ceramic materials are reviewed in this paper. Moreover, the preparation of doped high-emissivity ceramic materials and latest research status are introduced, and the future development trend is also discussed.
  • 加载中
    1. [1]

    2. [2]

       

    3. [3]

    4. [4]

       

    5. [5]

       

    6. [6]

      Huang J P, Fan C L, Song G P, et al. Appl. Surf. Sci., 2013, 280: 605~609. 

    7. [7]

       

    8. [8]

      Wang S M, Kuang F H, Yan Q Z, et al. J. Alloys Compd., 2010, 509(6): 2819~2823.

    9. [9]

      Wang S, Liang K. Non-Cryst. Solids., 2008, 354: 1522~1525. 

    10. [10]

      Wang S M, Kuang F H. J. Mater. Sci. Technol., 2010, 26(5): 445~448. 

    11. [11]

      Zou D, Chu X S, Wu F. Tech. Ceram. Int., 2013, 39: 3585~3589. 

    12. [12]

       

    13. [13]

       

    14. [14]

      Jin T, Zeng R C. Adv. Mater. Res., 2011, 311: 140~144.

    15. [15]

      Zhang Y, Lin J, Wen D J. J. Mater. Sci. Technol., 2010, 26: 687~692. 

    16. [16]

      Zhang Y, Wen D. Mater. Sci. Eng. B, 2010, 172: 331~335. 

    17. [17]

      Wu X Y, Yu H B, Dong H. Ceram. Int., 2014, 40: 5905~5911. 

    18. [18]

      Xu W, Yu H, Dong H. Ceram. Int., 2014, 40: 12883~12889. 

    19. [19]

      Zhang J, Bai H, Ding Y H, et al. J. Alloys Compd., 2019, 787: 638~648. 

    20. [20]

      Zhang J, Bai H, He S M, et al. J. Solid. State. Chem., 2020, 282: 121089. 

    21. [21]

      Hou H L, Xu G Y, Tan S J, et al. J. Alloys Compd., 2018, 735: 2205~2211. 

    22. [22]

      Hou H L, Xu G Y, Tan S J, et al. J. Alloys Compd., 2018, 763: 736~741. 

    23. [23]

       

    24. [24]

       

    25. [25]

      Han Z, Liu J, Li X W, et al. J. Am. Ceram. Soc., 2014, 97(9): 2705~2708. 

    26. [26]

      Liu L, Zhang S Y, Ma Z, et al. Ceram. Int., 2020, 46: 19738~19742. 

    27. [27]

      Lu Y, Zhang R, Wei L, et al. J. Mater. Sci., 2015, 27: 2412~2418. 

    28. [28]

       

    29. [29]

      Ye J, Bu C, Han Z, et al. J. Eur. Ceram. Soc., 2015, 35: 3111~3118. 

    30. [30]

      Deng Y, Zhang K, Yang Y, et al. J. Alloys Compd., 2019, 774: 434~442. 

    31. [31]

      Tang G, Yu Y, Chen W, et al. J. Alloys Compd., 2008, 461: 486~489. 

    32. [32]

      Shen X M, Xu G Y, Shao C M. Phys. Condens. Matter., 2010, 405: 1090~1094. 

    33. [33]

      Zhang S Y, Cao Q X, Ma X H. Appl. Surf. Sci., 2012, 258: 7036~7038. 

    34. [34]

      Shen X M, Xu G Y, Shao C M. Solid. State. Commun., 2009, 149: 852~854. 

    35. [35]

    36. [36]

    37. [37]

       

    38. [38]

    39. [39]

    40. [40]

      Cagran C P, Hanssen L M, Noorma M, et al. Int. J. Thermophys., 2007, 28: 581~597. 

    41. [41]

      Mutschke H, Andersen A C, Clement D, et al. Astron. Astrophys., 1999, 345(1): 187~202. 

    42. [42]

      Zhu M, Chen J, Ran N, et al. J. Eur. Ceram. Soc., 2020, 40: 3528~3534. 

    43. [43]

      Wang F Y, Cheng L F, Zhang Q, et al. Appl. Surf. Sci., 2014, 313: 670~676. 

    44. [44]

      Li N, Xing P, Li C, et al. Appl. Surf. Sci., 2017, 409: 1~7. 

    45. [45]

      Wang F Y, Cheng L F, Xie Y N, et al. J. Alloys Compd., 2015, 625: 1~7. 

    46. [46]

       

    47. [47]

       

    48. [48]

       

    49. [49]

       

    50. [50]

       

    51. [51]

       

    52. [52]

       

    53. [53]

       

    54. [54]

       

    55. [55]

      Benko I, Fargo A. Key. Eng. Mater., 1991, 56-57: 303~312. 

    56. [56]

       

  • 加载中
    1. [1]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    2. [2]

      Qiwen Chen Baolei Wang . Research Progress on One-Electron σ-Bond of Organic Compounds. University Chemistry, 2025, 40(11): 191-198. doi: 10.12461/PKU.DXHX202412136

    3. [3]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    4. [4]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    5. [5]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    6. [6]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-0. doi: 10.3866/PKU.WHXB202404023

    7. [7]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    8. [8]

      Guanghui Wang Chen Qian Zhiyong Ma . Preparation and Characterization of 7H-Benzo[C]Carbazole Based Ultra-Long Organic Room Temperature Phosphorescence Material. University Chemistry, 2025, 40(11): 289-299. doi: 10.12461/PKU.DXHX202412062

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Ao XIABotao YUJun CHENGuoqiang TAN . Preparation and electrochemical property of Ce-doped MnO2. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2514-2526. doi: 10.11862/CJIC.20250163

    11. [11]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    12. [12]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444

    13. [13]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    14. [14]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    15. [15]

      Fan FanHao XiuYuting WangYongpeng CuiYajun Wang . Construction of NH2-MIL-125/Na-doped g-C3N4 composite S-scheme heterojunction and its performance in photocatalytic hydrogen peroxide production. Acta Physico-Chimica Sinica, 2026, 42(2): 100143-0. doi: 10.1016/j.actphy.2025.100143

    16. [16]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    17. [17]

      Qilin YUYifei XUPengjun ZHANGShuwei HAOChongqiang ZHUChunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418

    18. [18]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    19. [19]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    20. [20]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

Metrics
  • PDF Downloads(111)
  • Abstract views(4141)
  • HTML views(1536)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return