Citation: Hu Dan, Liu Qiao, Chen Chongyi. Polymer Hydrogel Based Materials for Supercapacitors[J]. Chemistry, ;2018, 81(6): 483-492. shu

Polymer Hydrogel Based Materials for Supercapacitors

  • Corresponding author: Chen Chongyi, chenchongyi@nbu.edu.cn
  • Received Date: 23 March 2018
    Accepted Date: 2 April 2018

Figures(8)

  • Stretchability and compressibility are essential parameters for flexible and wearable supercapacitors. Polymer hydrogels with excellent mechanical properties and unique network microstructures have become ideal materials for the new generation high-performance supercapacitors. Polymer hydrogels can be used as either flexible electrode materials with high energy storage efficiency or quasi-solid-state electrolyte materials to prepare lightweight, safe and stable flexible all-solid-state energy storage devices. Herein, recent progresses in the application of polymer hydrogels in the field of supercapacitors were reviewed based on the chemical composition of polymer hydrogels, in terms of the types of electrodes and electrolytes, respectively, and the development trend of polymer hydrogels in this field was also prospected.
  • 加载中
    1. [1]

      L L Zhang, X S Zhao. Chem. Soc. Rev., 2009, 38(9):2520-2531. 

    2. [2]

      Z Yu, L Tetard, L Zhai et al. Energy Environ. Sci., 2015, 8(3):702-730. 

    3. [3]

      T R Hoare, D S Kohane. Polymer, 2008, 49(8):1993-2007. 

    4. [4]

      N A Peppas, J Z Hilt, A Khademhosseini et al. Adv. Mater., 2006, 18(11):1345-1360. 

    5. [5]

      H Yuk, S Lin, C Ma et al. Nat. Commun., 2017, 8:14230. 

    6. [6]

      H Yuk, T Zhang, S Lin et al. Nat. Mater., 2016, 15(2):190-196. 

    7. [7]

      J A Luckanagul, K Metavarayuth, S Feng et al. ACS Biomater. Sci. Eng., 2016, 2(4):606-615. 

    8. [8]

      C Chen, D Wu, W Fu et al. Biomacromolecules, 2013, 14(8):2494-2498. 

    9. [9]

      Z Lei, Q Wang, S Sun et al. Adv. Mater., 2017, 29(22):1700321. 

    10. [10]

      G Cai, J Wang, K Qian et al. Adv. Sci., 2017, 4(2):1600190. 

    11. [11]

      E Armelin, M M Perez-Madrigal, C Aleman et al. J. Mater. Chem. A, 2016, 4(23):8952-8968. 

    12. [12]

      N A Choudhury, S Sampath, A K Shukla. Energy Environ. Sci., 2009, 2(1):55-67. 

    13. [13]

      F Liu, S Song, D Xue et al. Adv. Mater., 2012, 24(8):1089-1094. 

    14. [14]

      Y Meng, Y Zhao, C Hu et al. Adv. Mater., 2013, 25(16):2326-2331. 

    15. [15]

      T Chen, R Hao, H Peng et al. Angew. Chem. Int. Ed., 2015, 54(2):618-622.

    16. [16]

      M B Sassin, C N Chervin, D R Rolison et al. Acc. Chem. Res., 2013, 46(5):1062-1074. 

    17. [17]

      T Liu, L Finn, M Yu et al. Nano Lett., 2014, 14(5):2522-2527. 

    18. [18]

      A Sumboja, C Y Foo, X Wang et al. Adv. Mater., 2013, 25(20):2809-2815. 

    19. [19]

      X Xiao, X Peng, H Jin et al. Adv. Mater., 2013, 25(36):5091-5097. 

    20. [20]

      L Pan, G Yu, D Zhai et al. PNAS, 2012, 109(24):9287-9292. 

    21. [21]

      H Guo, W He, Y Lu et al. Carbon, 2015, 92:133-141. 

    22. [22]

      K Wang, X Zhang, C Li et al. J. Mater. Chem. A, 2014, 2(46):19726-19732. 

    23. [23]

      S Zeng, H Chen, F Cai et al. J. Mater. Chem. A, 2015, 3(47):23864-23870. 

    24. [24]

      M Moussa, Z Zhao, M F El-Kady et al. J. Mater. Chem. A, 2015, 3(30):15668-15674. 

    25. [25]

      J Luo, W Zhong, Y Zou et al. J. Power Sources, 2016, 319:73-81. 

    26. [26]

      M A Smirnov, M P Sokolova, N V Bobrova et al. J. Power Sources, 2016, 304:102-110. 

    27. [27]

      G Z Zhang, Y H Chen, Y H Deng et al. ACS Appl. Mater. Interf., 2017, 9(41):36301-36310. 

    28. [28]

      W Li, F Gao, X Wang et al. Angew. Chem. Int. Ed., 2016, 55(32):9196-9201. 

    29. [29]

      G P Hao, F Hippauf, M Oschatz et al. ACS Nano, 2014, 8(7):7138-7146. 

    30. [30]

      Y Shi, L Pan, B Liu et al. J. Mater. Chem. A, 2014, 2(17):6086-6091. 

    31. [31]

      B S Yin, S W Zhang, Q Q Ren et al. J. Mater. Chem. A, 2017, 5(47):24942-24950. 

    32. [32]

      X M Wu, M Lian. J. Power Sources, 2017, 362:184-191. 

    33. [33]

      Y Han, M Shen, Y Wu et al. Synth. Met., 2013, 172:21-27. 

    34. [34]

      Y Q Han, Y Guo, M X Shen et al. High Perform. Polym., 2014, 26(5):499-506. 

    35. [35]

      B Yao, H Wang, Q Zhou et al. Adv. Mater., 2017, 29(28):1700974. 

    36. [36]

      A Lewandowski, M Zajder, E Frackowiak et al. Electrochim. Acta, 2001, 46(18):2777-2780. 

    37. [37]

      S Nohara, H Wada, N Furukawa et al. Electrochim. Acta, 2003, 48(6):749-753. 

    38. [38]

      H Wada, S Nohara, N Furukawa et al. Electrochim. Acta, 2004, 49(27):4871-4875. 

    39. [39]

      K T Lee, N L Wu. J. Power Sources, 2008, 179(1):430-434. 

    40. [40]

      K T Lee, J F Lee, N L Wu. Electrochim. Acta, 2009, 54(26):6148-6153. 

    41. [41]

      Y Guo, X Zhou, Q Tang et al. J. Mater. Chem. A, 2016, 4(22):8769-8776. 

    42. [42]

      S A Hashmi, R J Latham, R G Linford et al. Polym. Int., 1998, 47(1):28-33. 

    43. [43]

      Z Zhang, K Chi, F Xiao et al. J. Mater. Chem. A, 2015, 3(24):12828-12835. 

    44. [44]

      N A Choudhury, A K Shukla, S Sampath et al. J. Electrochem. Soc., 2006, 153(3):A614-A620.

    45. [45]

      H Wada, K Yoshikawa, S Nohara et al. J. Power Sources, 2006, 159(2):1464-1467. 

    46. [46]

      C C Yang, S T Hsu, W C Chien. J. Power Sources, 2005, 152(1):303-310. 

    47. [47]

      K Wang, X Zhang, C Li et al. Adv. Mater., 2015, 27(45):7451-7457. 

    48. [48]

      L M Zang, Q F Liu, J H Qiu et al. ACS Appl. Mater. Interf., 2017, 9(39):33941-33947. 

    49. [49]

      J Hu, K Xie, X Liu et al. Electrochim. Acta, 2017, 227:455-461. 

    50. [50]

      H Li, T Lv, N Li et al. Nanoscale, 2017, 9(46):18474-18481. 

    51. [51]

      Y Huang, M Zhong, F K Shi et al. Angew. Chem. Int. Ed., 2017, 56(31):9141-9145. 

    52. [52]

      N A Choudhury, S Sampath, A K Shukla. J. Electrochem. Soc., 2008, 155(1):A74-A81. 

    53. [53]

      N A Choudhury, P W C Northrop, A C Crothers et al. J. Appl. Electrochem., 2012, 42(11):935-943. 

    54. [54]

      M M Perez-Madrigal, F Estrany, E Armelin et al. J. Mater. Chem. A, 2016, 4(5):1792-1805. 

  • 加载中
    1. [1]

      Huayan Liu Yifei Chen Mengzhao Yang Jiajun Gu . 二维材料基超级电容器的容量与倍率性能提升策略. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063

    2. [2]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    3. [3]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    4. [4]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    5. [5]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    6. [6]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    7. [7]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    8. [8]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    9. [9]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    10. [10]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    11. [11]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    12. [12]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    13. [13]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    14. [14]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    15. [15]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    16. [16]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    17. [17]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    18. [18]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    19. [19]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    20. [20]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

Metrics
  • PDF Downloads(6)
  • Abstract views(247)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return