Citation: Tang Zihuan, Zhang Caishun, Zhang Lei, Liu Daosheng. Progress in MOFs Materials Containing BODIPY Unit[J]. Chemistry, ;2019, 82(9): 796-800. shu

Progress in MOFs Materials Containing BODIPY Unit

Figures(9)

  • MOFs is a kind of material with highly ordered pore structure and large specific surface area, MOFs containing BODIPY chromophore are materials prepared by designing BODIPY chromophore as a ligand that can coordinate with metal centers and directly coordinate with metal ions, or introducing the chromophore into MOFs materials as an optical absorption antenna. Such materials have been widely concerned for their strong absorption of visible light. In this paper, the preparation methods of MOFs containing BODIPY chromophore were summarized. The structure characteristics, photophysical properties and application prospect of this kind of materials were discussed. Finally, the prospect and development trend of this kind of materials in the future are prospected. This paper can provide reference for the development of such materials in the field of photochemistry.
  • 加载中
    1. [1]

      M D Allendorf, C A Bauer, R K Bhakta et al. Chem. Soc. Rev., 2009, 38(5):1330~1352. 

    2. [2]

      Z Hu, B J Deibert, J Li. Chem. Soc. Rev., 2014, 43(16):5815~5840. 

    3. [3]

      Y Cui, Y Yue, G Qian et al. Chem. Rev., 2012, 112(2):1126~1162. 

    4. [4]

      L E Kreno, K Leong, O K Farha et al. Chem. Rev., 2012, 112(2):1105~1125. 

    5. [5]

      D A G Gualdrón, Y J Colón, X Zhang et al. Energy Environ. Sci., 2016, 9(10):3279~3289. 

    6. [6]

      Y Yang, L Chen, F Jiang et al. J. Mater. Chem. C, 2017, 5(8):1981~1989. 

    7. [7]

      B Garai, A Mallick, R Banerjee. Chem. Sci., 2016, 7(3):2195~2200. 

    8. [8]

      A Mallick, B Garai, M A Addicoat et al. Chem. Sci., 2015, 6(2):1420~1425. 

    9. [9]

      S Huh, S J Kim, Y Kim. CrystEngComm, 2016, 18(3):345~368. 

    10. [10]

      M Zhang, M Bosch, T Gentle et al. CrystEngComm, 2014, 16(20):4069~4083. 

    11. [11]

      N Boens, V Leen, W Dehaen. Chem. Soc. Rev., 2012, 41(3):1130~1172. 

    12. [12]

      L Yuan, W Lin, K Zheng et al. Chem. Soc. Rev., 2013, 42(2):622~661. 

    13. [13]

      A Bessette, G S Hanan. Chem. Soc. Rev., 2014, 43(10):3342~3405. 

    14. [14]

      H Lu, J Mack, Y Yang et al. Chem. Soc. Rev., 2014, 43(13):4778~4823. 

    15. [15]

      J Zhao, K Xu, W Yang et al. Chem. Soc. Rev., 2015, 44(24):8904~8939. 

    16. [16]

      M A Lebedeva, T W Chamberlain, A N Khlobystov. Chem. Rev., 2015, 115(20):11301~11351. 

    17. [17]

      K M L Taylor-Pashow, J D Rocca, Z G Xie et al. J. Am. Chem. Soc., 2009, 131(40):14261~14263. 

    18. [18]

      C Y Lee, O K Farha, B J Hong et al. J. Am. Chem. Soc., 2011, 133(40):15858~15861. 

    19. [19]

      S A Baudron. Dalton Transac., 2013, 42(21):7498~7509. 

    20. [20]

      Y B Ding, Y Y Tang, W H Zhu et al. Chem. Soc. Rev., 2015, 44(5):1101~1112. 

    21. [21]

      R Sakamoto, T Iwashima, M Tsuchiya et al. J. Mater. Chem. A, 2015, 3(30):15357~15371. 

    22. [22]

      S A Baudron. CrystEngComm., 2016, 18(25):4671~4680. 

    23. [23]

      M Kondo, S Furukawa, K Hirai et al. Angew. Chem. Int. Ed., 2010, 49(31):5327~5330. 

    24. [24]

      J Park, D Feng, H Zhou. J. Am. Chem. Soc., 2015, 137(4):1663~1672. 

    25. [25]

      M Li, Y Yao, J Ding et al. Inorg. Chem., 2015, 54(4):1346~1353. 

    26. [26]

      F Zhang, S A Baudron, W Hosseini. CrystEngComm, 2017, 19(30):4393~4400. 

    27. [27]

      L Zhou, Y S Xue, Y Xu et al. CrystEngComm, 2013, 15(36):7315~7320. 

    28. [28]

      Y Quan, Q Y Li, Q Zhang et al. RSC Adv., 2016, 6(29):23995~23999. 

    29. [29]

      G Gupta, A Das, N B Ghate et al. Chem. Commun., 2016, 52(23):4274~4277. 

    30. [30]

      W Q Wang, L Wang, Z S Li et al. Chem. Commun., 2016, 52(31):5402~5405. 

    31. [31]

      T Zhang, L Wang, C Ma et al. J. Mater. Chem. B, 2017, 5(12):2330~2336. 

    32. [32]

      J Zhao, Y Zhang, G Yu et al. J. Am. Chem. Soc., 2018, 140(24):7730~7736. 

  • 加载中
    1. [1]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    2. [2]

      Guoqiang PengXiuyan LiMin LiZhibo SuFalu HuGuowei Zhou . Engineering efficient metal-organic frameworks for photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2026, 42(2): 100164-0. doi: 10.1016/j.actphy.2025.100164

    3. [3]

      Yuyao GuanBaoting YuJun DingTingting SunZhigang Xie . BODIPY photosensitizers for antibacterial photodynamic therapy. Chinese Chemical Letters, 2025, 36(8): 110645-. doi: 10.1016/j.cclet.2024.110645

    4. [4]

      Yueyan ZhangZhihai YangXia SuoRuicheng WangXuewei NieZafar MahmoodYanping HuoShi-Jian SuShaomin Ji . Tailoring luminescence properties of NIR-BODIPY emitters through donor engineering and intramolecular conformational locking for high-performance solution-processed OLEDs. Chinese Chemical Letters, 2025, 36(12): 111071-. doi: 10.1016/j.cclet.2025.111071

    5. [5]

      Yaxin SunHuiyu LiShiquan GuoCongju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418

    6. [6]

      Beitong ZhuXiaorui YangLirong JiangTianhong ChenShuangfei WangLintao Zeng . A portable and versatile fluorescent platform for high-throughput screening of toxic phosgene, diethyl chlorophosphate and volatile acyl chlorides. Chinese Chemical Letters, 2025, 36(1): 110222-. doi: 10.1016/j.cclet.2024.110222

    7. [7]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    8. [8]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    9. [9]

      Kun JIANGYutong XUEKelin LIUMiao WANGTongming SUNYanfeng TANG . CeVO4 hollow microspheres: Fabrication and adsorption performance for dyes. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2229-2236. doi: 10.11862/CJIC.20250223

    10. [10]

      Qihang WuHui WenWenhai LinTingting SunZhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692

    11. [11]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    12. [12]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    13. [13]

      Shenghui TuAnru LiuHongxiang ZhangLu SunMinghui LuoShan HuangTing HuangHonggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761

    14. [14]

      Renjie XueChao MaJing HeXuechao LiYanning TangLifeng ChiHaiming Zhang . Catassembly in the Host-Guest Recognition of 2D Metastable Self-Assembled Networks. Acta Physico-Chimica Sinica, 2024, 40(9): 2309011-0. doi: 10.3866/PKU.WHXB202309011

    15. [15]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    16. [16]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    17. [17]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    18. [18]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    19. [19]

      Lin LIJiaxue LIMeixia YANGJiayu DINGJiaqi JINGRuiping ZHANG . Preparation of mitoxantrone self-assembled carrier-free nanodrugs regulated by sodium acetate for apoptosis induction of human breast carcinoma cells. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2536-2548. doi: 10.11862/CJIC.20250138

    20. [20]

      Yunjia Jiang Lingyao Wang Yuanbin Zhang . Anion pillared MOFs for challenging hydrocarbon separations. Chinese Journal of Structural Chemistry, 2024, 43(11): 100374-100374. doi: 10.1016/j.cjsc.2024.100374

Metrics
  • PDF Downloads(6)
  • Abstract views(485)
  • HTML views(63)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return