Citation: Wu Yu, Liu Jiacheng. Self-Assembled Dye-Sensitized Solar Cell Containing Dihydrothiazole Porphyrin Coordination Polymers[J]. Chemistry, ;2020, 83(8): 718-723. shu

Self-Assembled Dye-Sensitized Solar Cell Containing Dihydrothiazole Porphyrin Coordination Polymers

  • Received Date: 17 February 2020
    Accepted Date: 12 May 2020

Figures(5)

  • Two new dihydrothiazole zinc porphyrin(2+2 type and A4 type) based Mn (Ⅱ) ion coordination polymers (CPsx, x=1, 2) have been synthesized and well-characterized. Two as-synthesized coordination polymers and anchored porphyrins (ZnPA) self-assembled into dye-sensitized solar cells through axial coordination of metal-ligands. The assemby modes of the assemblies immobilized on TiO2 electrode surfaces were also verified by TEM. The photovoltaic performance tests showed that the self-assembly polymer has better photoelectric conversion efficiency than the monomer, especially the A4 type CPs2 based solar cell showed higher short circuit current and conversion efficiency. Their optical performance and EIS were also investigated to further understand the photoelectrochemical results.
  • 加载中
    1. [1]

      Yella A, Lee H W, Tsao H N, et al. Science, 2011, 334(6056):629-634. 

    2. [2]

      O'Regan B, Grätzel M. Nature, 1991, 353(6346):737-740. 

    3. [3]

      Kay A, Grätzel M. J. Phys. Chem. A, 1993, 97(23):6272-6277. 

    4. [4]

      Kato F, Kikuchi A, Okuyama T, et al. Angew. Chem. Int. Ed., 2012, 51(40):10177-10180. 

    5. [5]

      Meng X D, Yin M, Shu T, et al. J. Inorg. Mater., 2018, 33(5):483-493. 

    6. [6]

    7. [7]

      Mandal S, Nayak S K, Mallampalli S, et al. ACS Appl. Mater. Interf., 2014, 6(1):130-136. 

    8. [8]

      Fuhrhop J H. Langmuir, 2014, 30(1):1-12. 

    9. [9]

      Dawsey A C, Li V, Hamilton K C, et al. Dalton Transac., 2012, 41(26):7994-8002. 

    10. [10]

      Mofford D M, Reddy G R, Miller S C. J. Am. Chem. Soc., 2014, 136(38):13277-13282. 

    11. [11]

      Brockmeyer F, Morosow V, Martens J. Org. Biomol. Chem., 2015, 13(11):3341-3346. 

    12. [12]

      Velusamy M, Justin Thomas K R, Lin J T, et al. Org. Lett., 2005, 7(10):1899-1902. 

    13. [13]

      Wang Y, Zhou E J, Liu Y Q, et al. Chem. Mater., 2007, 19(14):3361-3363. 

    14. [14]

      Luo J, Xu M F, Li R Z, et al. J. Am. Chem. Soc., 2014, 136(1):265-272. 

    15. [15]

      Kurotobi K, Toude Y, Kawamoto K, et al. Chem. Eur. J. 2013, 19(50):17075-17081.

    16. [16]

      Imahori H, Umeyama T, Kurotobi K, et al. Chem. Commun., 2012, 48(34):4032-4045. 

    17. [17]

      Ichiki T, Matsuo Y, Nakamura E. Chem. Commun., 2013, 49(3):279-281. 

    18. [18]

      D'Souza F, Amin A N, El-Khouly M E, et al. J. Am. Chem. Soc., 2012, 134(1):654-664. 

    19. [19]

      Cao J, Liu J C, Deng W T, et al. Electrochim. Acta, 2013, 112:515-521. 

    20. [20]

      Wu Y, Zhang Q, Liu J C, et al. Org. Electron., 2017, 41:301-306. 

    21. [21]

      Han F M, Yang J Y, Zhe Y, et al. Dalton Transac., 2016, 45(21):8862-8868. 

    22. [22]

      Palomares E, Martínez-díaz M V, Haque S A, et al. Chem. Commun., 2004, (18):2112-2113.

    23. [23]

      Kira A, Umeyama T, Matano Y, et al. J. Am. Chem. Soc., 2009, 131(9):3198-3200. 

    24. [24]

      Wang P, Zakeeruddin S M, Comte P, et al. J. Phys. Chem. B, 2003, 107(51):14336-14341. 

    25. [25]

      Cai N, Wang P, Zhang M, et al. Adv. Funct. Mater., 2013, 23(14):1846-1854. 

    26. [26]

      Trachsel D. Helv. Chim. Acta, 2002, 85(9):3019-3026. 

    27. [27]

    28. [28]

    29. [29]

      He C, Lin Z H, He Z, et al. Angew. Chem. Int. Ed., 2008, 47(5):877-881. 

    30. [30]

      Ray A, Banerjee S, Sen S, et al. Struct. Chem., 2008, 19(2):209-217. 

    31. [31]

      Mangalam N A, Sheeja S R, Kurup M R P. Polyhedron, 2010, 29(18):3318-3323. 

    32. [32]

      Leondiadis L, Momenteau M. J. Org. Chem., 1989, 54(26):6135-6138. 

    33. [33]

      Seo K D, Lee M J, Song H M, et al. Dyes Pigments, 2012, 94(1):143-149. 

    34. [34]

    35. [35]

      Subbaiyan N K, Wijesinghe C A, F D'Souza. J. Am. Chem. Soc., 2009, 131(41):14646-14647. 

    36. [36]

      Mathew S, Yella A, Gao P, et al. Nat. Chem., 2014, 6(3):242-247. 

    37. [37]

    38. [38]

      Wang Q, Moser J E, Grätzel M. J. Phys. Chem. B, 2005, 109(31):14945-14953. 

    39. [39]

      Barea E M, Gónzalea-Pedro V, Ripollés-Sanchis T, et al. J. Phys. Chem. C, 2011, 115(21):10898-10902. 

  • 加载中
    1. [1]

      Kun JIANGYutong XUEKelin LIUMiao WANGTongming SUNYanfeng TANG . CeVO4 hollow microspheres: Fabrication and adsorption performance for dyes. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2229-2236. doi: 10.11862/CJIC.20250223

    2. [2]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    3. [3]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    4. [4]

      Renjie XueChao MaJing HeXuechao LiYanning TangLifeng ChiHaiming Zhang . Catassembly in the Host-Guest Recognition of 2D Metastable Self-Assembled Networks. Acta Physico-Chimica Sinica, 2024, 40(9): 2309011-0. doi: 10.3866/PKU.WHXB202309011

    5. [5]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    6. [6]

      Binbin LiuYang ChenTianci JiaChen ChenZhanghao WuYuhui LiuYuhang ZhaiTianshu MaChanglei Wang . Hydroxyl-functionalized molecular engineering mitigates 2D phase barriers for efficient wide-bandgap and all-perovskite tandem solar cells. Acta Physico-Chimica Sinica, 2026, 42(1): 100128-0. doi: 10.1016/j.actphy.2025.100128

    7. [7]

      Zhen FANJiayan WANGWenhao ZHUXiuchun ZHANGYang WANGHao LIZeyuan WANGSongzhi ZHENGWeihai SUN . Fabrication of CsPbBr3 perovskite solar cells using buried polyvinylidene fluorideinterface modification method. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2464-2478. doi: 10.11862/CJIC.20250191

    8. [8]

      Qian ZHANGYuxuan ZHANGYongguang YANGRuijie BAIYuandong LILing LI . FeMoS4/carbon fiber cloth composites: Preparation and application in dye-sensitized solar cells. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1916-1926. doi: 10.11862/CJIC.20240442

    9. [9]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 100027-0. doi: 10.3866/PKU.WHXB202406007

    10. [10]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    11. [11]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    12. [12]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    13. [13]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    14. [14]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    15. [15]

      Zhenhuan WangWeifei WeiRuijie MaDou LuoZhanxiang ChenJun ZhangLiyang YuGang LiZhenghui Luo . Core cyanation of benzo[a]phenazine acceptor enables 19.04% binary organic solar cells with green solvent compatibility. Acta Physico-Chimica Sinica, 2026, 42(2): 100182-0. doi: 10.1016/j.actphy.2025.100182

    16. [16]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    17. [17]

      Chuan′an DINGWeibo YANShaoying WANGHao XIN . Preparation of wide-band gap copper indium gallium sulfide solar cells by solution method. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1755-1764. doi: 10.11862/CJIC.20250198

    18. [18]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    19. [19]

      Lin LIJiaxue LIMeixia YANGJiayu DINGJiaqi JINGRuiping ZHANG . Preparation of mitoxantrone self-assembled carrier-free nanodrugs regulated by sodium acetate for apoptosis induction of human breast carcinoma cells. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2536-2548. doi: 10.11862/CJIC.20250138

    20. [20]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

Metrics
  • PDF Downloads(4)
  • Abstract views(746)
  • HTML views(157)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return