Citation: ZHANG Bo, ZHANG Hong, YANG Yun-fei, HU Guang-zhou, ZHANG Peng-qi, LUN Fei. Study on the influence of particle size on the ash melting behavior of Jincheng coal[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(12): 1430-1436. shu

Study on the influence of particle size on the ash melting behavior of Jincheng coal

  • Corresponding author: ZHANG Hong, hzhang@cumt.edu.cn
  • Received Date: 6 August 2018
    Revised Date: 28 September 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China and Shanxi Low Carbon Coal Foundation(U1510106)the National Natural Science Foundation of China and Shanxi Low Carbon Coal Foundation U1510106

Figures(9)

  • The slagging mechanism of the Jincheng coal in the ash-agglomerate fluidized bed gasification was explored. A typical Jincheng coal sampled from Shanxi, China was prepared into different particle size and the XRF, XRD, AFT, SEM and FactSageTM were employed to study the influence of particle size on the ash content, chemical and mineral composition and ash fusibility. The results indicate that the ash chemical composition and AFTs vary little with size below 6 mm. For the pulverized samples below 0.2 mm, there are apparent differences in the chemical composition and mineral composition, especially in Fe2O3. Both AFT results and SEM observations show that the sample with particle size less than 45 μm has a significantly higher melting temperature than the other three samples. The slag contents calculated with FactSageTM are consistent with the AFT results and SEM observations, which indicates that the change of ash melting behavior with particle size results from the change in chemical composition. The ternary phase diagram of SiO2-Al2O3-Fe2O3 can be used successfully to explain the mechanism of the change of ash melting behavior with particle size for Jincheng coal.
  • 加载中
    1. [1]

      CHEN Peng. Nature, Classification and Utilization of Coal in China[M]. Beijing:Chemical Industry Press, 2007.

    2. [2]

      FANG Yi-tian, WANG Yang, MA Xiao-yun, HUANG Jie-jie, WU Jin-hu, CHENG Zhong-hu, CHEN Han-shi. New progress in research and development of pressurized large-scale coal gasification technology for ash fusion fluidized bed coal gasification technology[J]. Coal Chem, 2007,35(1):11-15. doi: 10.3969/j.issn.1005-9598.2007.01.003

    3. [3]

      LI Feng-hai, HUANG Jie-jie, FANG Yi-tian, WANG Yang. Exploration on slagging mechanism of Jincheng anthracite during fluidized-bed gasification[J]. J Taiyuan Univ Technol, 2010,41(5):666-669.  

    4. [4]

      NARUSE I, KAMIHASHIRA D, KHAINIL , MIYAUCHI Y, KATO Y, YAMASHITA Y, TOMINAGA H. Fundamental ash deposition characteristics in pulverized coal reaction under high temperature conditions[J]. Fuel, 2005,84(4):405-410. doi: 10.1016/j.fuel.2004.09.007

    5. [5]

      WU X, ZHANG Z, PIAO G, HEX , CHEN Y, KOBAYASHI N, MORI S, ITAYA Y. Behavior of mineral matters in chinese coal ash melting during char-CO2/H2O gasification reaction[J]. Energy Fuels, 2009,23(5):2420-2428. doi: 10.1021/ef801002n

    6. [6]

      MATJIE RH, LI Z, WARD C R, FRENCH D. Chemical composition of glass and crystalline phases in coarse coal gasification ash[J]. Fuel, 2008,87(6):857-869. doi: 10.1016/j.fuel.2007.05.050

    7. [7]

      WALL T F, CREELMAN R A, GUPTA R P, GUPTA S K, COIN C, LOWE A. Coal ash fusion temperatures-New characterization techniques, and implications for slagging and fouling[J]. Prog Energy Combust Sci, 1998,24(4):345-353. doi: 10.1016/S0360-1285(98)00010-0

    8. [8]

      BARTELS M, LIN W, NIJENHUIS J. Agglomeration in fluidized beds at high temperatures:Mechanisms, detection and prevention[J]. Prog Energy Combust Sci, 2008,34(5):633-666. doi: 10.1016/j.pecs.2008.04.002

    9. [9]

      ZHANG Hong, HU Guang-zhou, FANG Jia-xin, PU Wen-xiu, MO Yan-xue, HA Si, LI Ying. Study on the distribution of minerals in pulverized coals[J]. J Eng Therm, 2008,29(7):1231-1235. doi: 10.3321/j.issn:0253-231X.2008.07.041

    10. [10]

      ZHANG H, MO Y, SUN M. Determination of the mineral distribution in pulverized coal using densitometry and laser particle sizing[J]. Energy Fuels, 2005,19(6):2261-2267. doi: 10.1021/ef050201u

    11. [11]

      ZHANG Peng-qi, YANG Qi-qi, TU Ka-bin, WANG Yue-lun, WANG Zu-wei, LIU Lin-lin. Study on the uneven melting law of coal ash in Jincheng[J]. J Fuel Chem T echnol, 2018,46(1):8-14. doi: 10.3969/j.issn.0253-2409.2018.01.002 

    12. [12]

      BI Ke-jun. Discussion on improvement scheme of gas washing water treatment in ash fusion fluidized bed coal gasification unit[J]. Chem Fert Des, 2011,49(2):26-28. doi: 10.3969/j.issn.1004-8901.2011.02.005

    13. [13]

      REINMÖLLER M, SCHREINER M, GUHL S, NEUROTH M, MEYER B. Formation and transformation of mineral phases in various fuels studied by different ashing methods[J]. Fuel, 2017,202:641-649. doi: 10.1016/j.fuel.2017.04.115

    14. [14]

      CHAKRAVARTY S, MOHANTY A, BANERJEE A, TRIPATHY R, MANDAL G K, BASARIYA M R, SHARMA M. Composition, mineral matter characteristics and ash fusion behavior of some Indian coals[J]. Fuel, 2015,150:96-101. doi: 10.1016/j.fuel.2015.02.015

    15. [15]

      REINMÖLLER M, KLINGER M, SCHREINER M. Relationship between ash fusion temperatures of ashes from hard coal, brown coal, and biomass and mineral phases under different atmospheres:A combined FactSageTM computational and network theoretical approach[J]. Fuel, 2015,151:118-123. doi: 10.1016/j.fuel.2015.01.036

    16. [16]

      LI F, LI Z, HUANG J, FANG Y. Understanding mineral behaviors during anthracite fluidized-bed gasification based on slag characteristics[J]. Appl Energy, 2014,131:279-287. doi: 10.1016/j.apenergy.2014.06.051

    17. [17]

      ZHAO Bin, WANG Qing-gong, MO Qiang, QU Ting-ting, LU Jun-fu, YUE Guang-xi. Study on classification of coal particles in fluidized bed[J]. J China Univ Min Technol, 2014,43(4):678-683.  

  • 加载中
    1. [1]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    2. [2]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    3. [3]

      Jiaxin SuJiaqi ZhangShuming ChaiYankun WangSibo WangYuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-0. doi: 10.3866/PKU.WHXB202408012

    4. [4]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    5. [5]

      Wanchun Zhu Yongmei Liu Li Wang Yunshan Bai Shu'e Song Xiaokui Wang Zhongyun Wu Hong Yuan Yunchao Li Fuping Tian Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Temperature. University Chemistry, 2025, 40(5): 128-136. doi: 10.12461/PKU.DXHX202503028

    6. [6]

      Yuqiong LiBing LanBin GuanChunlong DaiFan ZhangZifeng Lin . Molten Salt Derived Mo2CTx MXene with Excellent Catalytic Performance for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(9): 2306031-0. doi: 10.3866/PKU.WHXB202306031

    7. [7]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    8. [8]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    9. [9]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    10. [10]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    11. [11]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    12. [12]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    13. [13]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    14. [14]

      Haiyu ZhuZhuoqun WenWen XiongXingzhan WeiZhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-0. doi: 10.1016/j.actphy.2025.100078

    15. [15]

      Juntao YanLiang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024

    16. [16]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    17. [17]

      Xinming NieXinhe Wu . Schottky/S-scheme composite heterojunctions for efficient CO2 photoreduction. Acta Physico-Chimica Sinica, 2026, 42(3): 100192-0. doi: 10.1016/j.actphy.2025.100192

    18. [18]

      Yukai SHENZhaochao YANYangjun ZHOUMei HUANG . Nickel foam-supported NiFeP/NiFcDCA heterojunction electrocatalyst for efficient urea oxidation reaction. Chinese Journal of Inorganic Chemistry, 2026, 42(2): 237-246. doi: 10.11862/CJIC.20250257

    19. [19]

      Qiang Zhou Yu Huang Jiahe Li Wei Shao Wanqun Hu Pingping Zhu . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Taking “3D Printing Based on Fused Deposition Modeling/Photocuring Molding” as an Example. University Chemistry, 2026, 41(2): 393-399. doi: 10.12461/PKU.DXHX202502104

    20. [20]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

Metrics
  • PDF Downloads(13)
  • Abstract views(1255)
  • HTML views(255)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return