Citation: Wang Peng, Li Lihua, Wu Xian, Ma Cheng. Research Progress of Polyoxometalate-Based Photocatalysts in the Dyes Photodegradation[J]. Chemistry, ;2019, 82(5): 415-423. shu

Research Progress of Polyoxometalate-Based Photocatalysts in the Dyes Photodegradation

  • Corresponding author: Li Lihua, llh72@163.com
  • Received Date: 5 December 2018
    Accepted Date: 25 December 2018

Figures(9)

  • How to effectively remove the dyes from the waste water has been the popular direction of materials and environmental science. Compared with traditional adsorption and concentration filtration methods, the photocatalytic degradation has attracted more attention due to its unique environmental-friendly, conveniency, safety and without secondary pollution. In numerous catalysts, heteropoly acid (HPA) has great potential in photocatalytic applications due to its special 'cage' structure, tunable electronic properties, non-toxicity, oxygen-rich surface, cheapness and excellent redox properties, etc. In this paper, the research progress of polyoxometalate-based photocatalysts in recent years was introduced, and they can be classified into two major categories:modification and loading method, which were further subdivided into substitution HPAs, altered counterion HPA, organic and inorganic modification method, silicate loading method, titanium dioxide loading method and graphene loading method. The main improvement direction is to resolve their water solubility problem, broaden the light response range, increase their specific surface area and improve the recyclability. The synthesis conditions and catalytic mechanism of different catalyst systems were summarized and analyzed in detail, at the end, the future development trend is forecasted.
  • 加载中
    1. [1]

      R Abe. J. Photoch. Photobio. A, 2010, 11(4):179~209. 

    2. [2]

      H Salavati, N Tavakkoli, M Hosseinpoor. Ultrason. Sonochem., 2012, 19(3):546~553. 

    3. [3]

      A Popa, V Sasca, O Verdes et al. React. Kinet. Mech. Cat., 2015, 115(1):355~375. 

    4. [4]

      P Lei, C Chen, J Yang et al. Environ. Sci. Techol., 2005, 39(21):8466~8474. 

    5. [5]

      S Antonaraki, E Androulaki, D Dimotikali et al. J. Photoch. Photobio. A, 2002, 148(1):191~197. 

    6. [6]

      M A Rauf, S B Bukallah, A Hamadi et al. Chem. Eng. J., 2007, 129(1):167~172. 

    7. [7]

      T Yamase. Chem. Rev., 1998, 98(1):307~326. 

    8. [8]

      N Mahmoodi, M Arami, M Limaee et al. J. Colloid Interf. Sci., 2006, 295(1):159~164. 

    9. [9]

      G Marcì, E García-López, L Palmisano et al. Appl. Catal. B, 2009, 90(3):497~506. 

    10. [10]

      R R Ozer, J L Ferry. Environ. Sci. Technol., 2001, 35(15):3242~3248. 

    11. [11]

      C Hu, B Yue, T Yamase. Appl. Catal. A, 2000, 194(6):99~107. 

    12. [12]

      T Yamase. Catal. Surv. Asia, 2003, 7(4):203~217. 

    13. [13]

      A Yan, S Yao, Y Li et al. Chem. Eur. J., 2014, 20(23):6927~6933. 

    14. [14]

      Y Kim, S Shanmugam. ACS Appl. Mater. Interf., 2013, 5(22):12197~12204. 

    15. [15]

      R Bauer, H Fallmann. Res. Chem. Intermediat., 1997, 23(4):341~354. 

    16. [16]

      Y Hua, C Wang, J Liu et al. J. Mol. Catal. A, 2012, 365(4):8~14.

    17. [17]

      M Taghdiri, N Saadatjou, N Zamani et al. J. Hazard. Mater., 2013, 246~247(4):206~212. 

    18. [18]

      N Mirzaei, H R Ghaffari, K Sharafi et al. Chem. Eng. J., 2017, 5(4):3151~3160. 

    19. [19]

      Q Zhai, L Zhang, X Zhao et al. Appl. Surf. Sci., 2016, 377:17~22. 

    20. [20]

      B Fei, L Deng, J Wang et al. J. Hazard. Mater., 2017, 340:326~335. 

    21. [21]

      H Zhang, T Tong, W Cao et al. J. Sol-Gel Sci. Technol., 2015, 75(2):1~5.

    22. [22]

      G R Bertolini, V Vetere, M A Gallo et al. Compt. Rendus Chim., 2016, 19(10):1174~1183. 

    23. [23]

      H R Ghalebi, S Aber, A Karimi et al. J. Mol. Catal. A, 2016, 415:96~103. 

    24. [24]

      S Hocine, C Rabia, M Bettahar et al. React. Kinet. Mech. Cat., 2003, 79(2):357~364. 

    25. [25]

      A Selloni. Nat. Mater., 2008, 7(8):613~615. 

    26. [26]

      W Zhou, M Cao, S Su et al. J. Mol. Catal. A, 2013, 371(5):70~76.

    27. [27]

      T Li, Q Li, J Yan et al. Dalton Transac., 2014, 43(24):9061~9069. 

    28. [28]

      H Shi, T Zhang, T An et al. J. Colloid Interf. Sci., 2012, 380(1):121~127. 

    29. [29]

      A Olgun, A T Çolak, I·H Gübbük et al. J. Mol. Struct., 2017, 1134:78~84. 

    30. [30]

      K Lv, Y Xu. J. Phys. Chem. B, 2006, 110(12):6204~6212. 

    31. [31]

      W Wang, L Xu, G Gao et al. Inorg. Chem. Commun., 2009, 12(3):259~262. 

    32. [32]

      X Liu, J Luo, Y Zhu et al. J. Alloy Compd., 2015, 648:986~993. 

    33. [33]

      X Liu, W Gong, J Luo et al. Appl. Surf. Sci., 2016, 362:517~524. 

    34. [34]

      M Liu, X Yang, F Zhu et al. Dalton Transac., 2018, 47(15):5245~5251. 

    35. [35]

      X Fan, Y Guo, H Lv et al. Dalton Transac., 2018, 47(21):115~132.

    36. [36]

      A Balaska, E H Samar, A Grid et al. Desalin. Water Treat., 2015, 54(2):382~392. 

    37. [37]

      G Gao, F Li, L Xu et al. J. Am. Chem. Soc., 2008, 130(33):10838~10839. 

    38. [38]

      Y Gong, Y Guo, Q Hu et al. ACS Sustain. Chem. Eng., 2017, 5(5):4521~4530.

    39. [39]

      K Lv, Y Xu. J. Phys. Chem. B, 2006, 110(12):6204~6212. 

    40. [40]

      Y Zhou, G Chen, Z Long et al. RSC Adv., 2014, 4:42092~42113. 

    41. [41]

      S Farhadi, M Amini, F Mahmoudi et al. RSC Adv., 2016, 6(105):102984~102996. 

    42. [42]

      A Kubacka, M Fernandez-Garcia, G Colon. Chem. Rev., 2016, 112(3):1555~1614.

    43. [43]

      Y Hou, J Ma, T Wang et al. Mat. Sci. Semicon. Proc., 2015, 39:229~234. 

    44. [44]

      H Li, S Gao, M Cao et al. J. Colloid Interf. Sci., 2013, 394(1):434~440.

    45. [45]

      C Xue, J Xia, T Wang et al. Mater. Lett., 2014, 133:274~277. 

    46. [46]

      Q Wang, T Niu, D Jiao et al. New J. Chem., 2017, 41(11):1010~1039.

    47. [47]

      T Kyotani, T Nagai, A Sanjuro Inoue et al. Chem. Mater., 2014, 9(2):609~615. 

    48. [48]

      L Shi, T Wang, H Zhang et al. Adv. Sci., 2015, 2(3):150006~150014. 

    49. [49]

      H Park, W Cho. J. Phys. Chem. B, 2003, 107(16):3885~3890. 

    50. [50]

      N Dimitrijevic, M Savic, D Micic et al. Chem. Informat., 1984, 15(51):4278~4283. 

    51. [51]

      S Cong, Y Xu. J. Hazard. Mater., 2011, 192(2):485~489. 

    52. [52]

      S S Wang, G Y Yang. Chem. Rev., 2015, 115(11):4893~4901. 

    53. [53]

      R Contant, J P Ciabrini. Chem. Informat., 1977, 8(50):123~142.

    54. [54]

      J Kim, J Kim. Environ. Sci. Technol., 2014, 48(22):13384~13391. 

    55. [55]

      C Chen, P Lei, H Ji et al. Environ. Sci. Technol., 2004, 38:329~337. 

    56. [56]

      L Xu, X Yang, Y Guo et al. J. Hazard. Mater., 2010, 178(1/3):1070~1077.

    57. [57]

      H Shi, T Zhang, T An et al. J. Colloid Interf. Sci., 2012, 380(1):121~127. 

    58. [58]

      C H Liang, F B Li, C S Liu et al. Dyes Pigments, 2008, 76(2):477~484. 

    59. [59]

      J Thomas, S Radhika, M Yoon. Mol. Catal., 2017, 433:274~281. 

    60. [60]

      A Proust, B Matt, R Villanneau et al. Chem. Soc. Rev., 2012, 41(22):7605~7622. 

    61. [61]

      N Dubey, S S Rayalu, N K Labhsetwar et al. Appl. Catal. A, 2006, 303:152~157. 

    62. [62]

      R Chatti, S S Rayalu, N Dubey et al. Sol. Energ. Mater. Sol. Cell, 2007, 91(2):180~190.

    63. [63]

      C G Lin, J Hu, Y F Song. Adv. Inorg. Chem., 2017, 8(3):776~789.

    64. [64]

      S Nardecchia, D Carriazo, M L Ferrer et al. Chem. Soc. Rev., 2013, 42(2):794~830. 

    65. [65]

      T F Yeh, J M Syu, C Cheng et al. Adv. Funct. Mater., 2010, 20(14):2255~2262. 

    66. [66]

      S Nardecchia, D Carriazo, M Ferrer et al. Chem. Soc. Rev., 2013, 42(2):794~830. 

    67. [67]

      H Fakhri, A R Mahjoub, H Aghayan. Chem. Eng. Res. Des., 2017, 120:303~315. 

    68. [68]

      J Liu, Y Liu, N Liu et al. Science, 2015, 46(23):970~974.

    69. [69]

      Y Liu, F Luo, S Liu et al. Small, 2017, 13(14):160~174.

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    3. [3]

      Chao LiuHuan YuJiaming LiXi YuZhuangzhi YuYuxi SongFeng ZhangQinfang ZhangZhigang Zou . 具有光热效应的多级Ti3C2/Bi12O17Br2肖特基异质结简单合成及其太阳能驱动抗生素光降解的研究. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-0. doi: 10.1016/j.actphy.2025.100075

    4. [4]

      Yichang Liu Li An Dan Qu Zaicheng Sun . “双碳”背景下的综合设计实验——以PbCrO4催化甲基蓝的光降解速率常数测定为例. University Chemistry, 2025, 40(6): 222-229. doi: 10.12461/PKU.DXHX202407105

    5. [5]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    6. [6]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    7. [7]

      Yushan CaiFang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048

    8. [8]

      Juntao YanLiang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024

    9. [9]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    10. [10]

      Yu LiuPengfei LiYize LiuZaicheng Sun . Recent advances in carbon dots as a single photocatalyst. Acta Physico-Chimica Sinica, 2026, 42(2): 100167-0. doi: 10.1016/j.actphy.2025.100167

    11. [11]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    12. [12]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    13. [13]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    14. [14]

      Mian WeiChang ChengBowen HeBei ChengKezhen QiChuanbiao Bie . Inorganic-organic CdS/YBTPy S-scheme photocatalyst for efficient hydrogen production and its mechanism. Acta Physico-Chimica Sinica, 2025, 41(12): 100158-0. doi: 10.1016/j.actphy.2025.100158

    15. [15]

      Kun JIANGYutong XUEKelin LIUMiao WANGTongming SUNYanfeng TANG . CeVO4 hollow microspheres: Fabrication and adsorption performance for dyes. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2229-2236. doi: 10.11862/CJIC.20250223

    16. [16]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    17. [17]

      Jiaqi YangXuqiang HaoJiejie JingYuqiang HaoZhiliang Jin . 3D/2D ReSe2/ZnCdS S-scheme photocatalyst with efficient interfacial charge separation for optimized hydrogen production. Acta Physico-Chimica Sinica, 2025, 41(10): 100131-0. doi: 10.1016/j.actphy.2025.100131

    18. [18]

      Jiali LeiJuan WangWenhui ZhangGuohong WangZihui LiangJinmao Li . TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100174-0. doi: 10.1016/j.actphy.2025.100174

    19. [19]

      Zhiqiang XINGJinling LIUMingmin SULei ZHANGLijun YANG . CoNi dual-single-atom catalyst for electrocatalytic H2O2 production and in situ electro-Fenton degradation of pollutants. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2479-2490. doi: 10.11862/CJIC.20250181

    20. [20]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

Metrics
  • PDF Downloads(25)
  • Abstract views(2919)
  • HTML views(425)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return