Effect of preheating treatment on oxygen migration during lignite pyrolysis
- Corresponding author: FENG Jie, fengjie@tyut.edu.cn
Citation:
LI Hai-jie, LI Xiao-hong, FENG Jie, LI Wen-ying. Effect of preheating treatment on oxygen migration during lignite pyrolysis[J]. Journal of Fuel Chemistry and Technology,
;2019, 47(1): 1-7.
DENG J, ZHAO J Y, XIAO Y, ZHANG Y N, HUANG A C, SHU C M. Thermal analysis of the pyrolysis and oxidation behaviour of 1/3 coking coal[J]. J Therm Anal Calorim, 2017,129(3):1779-1786. doi: 10.1007/s10973-017-6331-3
YE C P, HUANG H J, LI X H, LI W Y, FENG J. The oxygen evolution during pyrolysis of HunlunBuir lignite under different heating modes[J]. Fuel, 2017,207:85-92. doi: 10.1016/j.fuel.2017.06.062
FENG X B, CAO J P, ZHAO X Y, SONG C, LIU T L, WANG J X, FAN X, WEI X Y. Organic oxygen transformation during pyrolysis of Baiyinhua lignite[J]. J Anal Appl Pyrolsis, 2015,117:106-115.
WANG Z B, WANG C, KANG R N, BIN F, WEI X L. Deoxygenation of Chinese long-flame coal in low-temperature pyrolysis[J]. J Therm Anal Calorim, 2017,131(3):3025-3033.
MOCHIZUKI Y, NAGANUMA R, TSUBOUCHI N. Influence of inherently-present oxygen-functional groups on coal fluidity and coke strength[J]. Energy Fuels, 2018,32(2):1657-1664.
SUN M, MA X X, YAO Q X, YAO Q X, WANG R C, MA Y X, FENG G, SHANG J X, XU L, YANG Y H. GC-MS and TG-FTIR study of petroleum ether extract and residue from low temperature coal tar[J]. Energy Fuels, 2011,25(3):1140-1145. doi: 10.1021/ef101610z
HUANG X, CAO J P, SHI P, ZHAO X Y, FENG X B, ZHAO Y P, FAN X, WEI X Y, TAKARADA T. Influences of pyrolysis conditions in the production and chemical composition of the bio-oils from fast pyrolysis of sewage sludge[J]. J Anal Appl Pyrolysis, 2014,110:353-362. doi: 10.1016/j.jaap.2014.10.003
KONG Jiao. Law of phenolic compounds formation in coal pyrolysis[D].Taiyuan: Taiyuan University of Technology, 2013.
TAO Jian-hong. Determination and study of oxygen functional groups in lignite[J]. Henan Chem Ind, 2010,27(8):8-10. doi: 10.3969/j.issn.1003-3467.2010.08.006
SOLOMON P R, SERIO M A, DESPANDE G V, KROO E. Cross-linking reactions during coal conversion[J]. Energy Fuels, 1990,4(1):42-54.
ZENG C, WU H, HAYASHI J, LI C. Effects of thermal pretreatment in helium on the pyrolysis behaviour of Loy Yang brown coal[J]. Fuel, 2005,84(12):1586-1592.
WANG Zhi-qing, BAI Zong-qing, LI Wen, LI Bao-qing, CHEN Hao-kan. Study on inhibition of crosslinking reaction during coal pyrolysis by pyridine pretreatment[J]. J Fuel Chem Technol, 2008,36(6):642-644.
WANG Zhi-cai, PAN Chun-xiu, REN Shi-biao, LEI Zhi-ping, WANG Xiao-ling, SHUI Heng-fu. Heat treatment and hydrothermal treatment of Xianfeng lignite[J]. J Fuel Chem Technol, 2015,43(9):1033-1037.
LI Wen, LI Dong-tao, CHEN Hao-kan, LI Bao-qing. Effects of o-alkylation on hydrogen bond and pyrolysis properties in coal[J]. J Fuel Chem Technol, 2003,31(6):514-518.
MIURA K, MAE K, SAKURADA K, HASHWIOTO K. Hash pyrolysis of coal following thermal pretreatment at low-temperature[J]. Energy Fuels, 1992,6(1):16-21.
ALLARDICE D J. The Science of Victorian Brown Coal[M]. Oxford:Butterworth-Heinemann, 1991:103-150.
MIURA K, MAE K, LI W, KUSAKAWA T, MOROZUMI F, KUMAMO A. Estimation of hydrogen bond distribution in coal through the analysis of OH stretching bands in diffuse reflectance infrared spectrum measured by in-situ technique[J]. Energy Fuels, 2001,15(3):599-610.
SCHAFER H N S. Determination of carboxyl groups in low rank coal[J]. Fuel, 1984,63(5):723-726. doi: 10.1016/0016-2361(84)90178-9
DONG Peng-wei, YUE Jun-rong, GAO Shi-qiu, XU Guang-wen. Effect of thermal pretreatment on pyrolysis behavior of lignite[J]. J Fuel Chem Technol, 2012,40(8):898-905.
CAO J P, SHI P, ZHAO X Y, WEI X Y, TAKARADA T. Catalytic reforming of volatiles and nitrogen compounds from sewage sludge pyrolysis to clean hydrogen and synthetic gas over a nickel catalyst[J]. Fuel Process Technol, 2014,123(7):34-40.
PLATONOV V V, POLOVETSKYAYA O S, PROSKURYAKOV V A, SHAVYRINA O V. Pyrolysis kinetics of phenols from lignite semicoking tar[J]. Russ J Appl Chem, 2002,75(11):1878-1882. doi: 10.1023/A:1022295027623
GENG C C, LI S Y, MA Y, YUE C T, HE J L, SHANG W L. Analysis and identification of oxygen compounds in longkou shale oil and shenmu coal tar[J]. Oil Share, 2012,29(4)322.
YANI S, ZHANG D. An experimental study of sulphate transformation during pyrolysis of an Australian lignite[J]. Fuel Process Technol, 2010,91(3):313-321. doi: 10.1016/j.fuproc.2009.11.002
ZOU L, JIN L J, LI Y, ZHU S W, HU H Q. Effect of tetrahydrofuran extraction on lignite pyrolysis under nitrogen[J]. J Anal Appl Pyrolysis, 2015,112:113-120. doi: 10.1016/j.jaap.2015.02.010
LI Z K, WEI X Y, YAN H L, ZONG Z M. Insight into the structural features of Zhaotong lignite using multiple techniques[J]. Fuel, 2015,153:176-182. doi: 10.1016/j.fuel.2015.02.117
LI C Z. Some recent advances in the understanding of the pyrolysis and gasification behaviour of Victorian brown coal[J]. Fuel, 2007,86(12):1664-1683.
FILLO J P. An understanding of phenolic compound production in coal gasification processing[D]. Pittsburgh: Carnegie Mellon University, 1979.
XIE Tong-ying. Study on pyrolysis and distribution of phenolic compounds from Baiyinhua lignite[D]. Dalian: Dalian University of Technology, 2008.
HUGGINS C M, PIMENTEL G C. Systematics of the infrared spectral properties of hydrogen bonding systems:Frequency shift, half width and intensity[J]. J Phys Chem, 2002,60(12):55-57.
PAINTER P C, SOBKOWIAK M, YOUTCHEFF J. FT-IR study of hydrogen bonding in coal[J]. Fuel, 1987,66(7):973-978. doi: 10.1016/0016-2361(87)90338-3
FULLER E L, SMYRL N R. Chemistry and structure of coals:Hydrogen bonding structures evaluated by diffuse reflectance infrared spectroscopy[J]. Appl Spectrosc, 1990,44(3):451-461.
CHEN C, JINSHENG GAO A, YAN Y. Observation of the type of hydrogen bonds in coal by FT-IR[J]. Energy Fuels, 1998,12(3):446-449. doi: 10.1021/ef970100z
CHEN Chong, XU Xue-min, GAO Jin-sheng, YAN Yong-jie, LI Wei, GUO Xin-wen. Study on hydrogen bond type in coal[J]. J Fuel Chem Technol, 1998,26(2):141-144.
SOLOMON P R, HAMBLEN D G, CARANGELO R M. Applications of fourier transform IR spectroscopy in fuel science[C]//Coal and Coal Products: Analytical characterization techniques. Washington: American Chemical Society, 1982.
YVRVM Y, ALTUNTA Ç N. Air oxidation of Beypazari lignite at 50℃, 100℃and 150℃[J]. Fuel, 1998,77(15):1809-1814. doi: 10.1016/S0016-2361(98)00067-2
Huiying Xu , Minghui Liang , Zhi Zhou , Hui Gao , Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011
Yinglian LI , Chengcheng ZHANG , Xinyu ZHANG , Xinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
Rui Li , Huan Liu , Yinan Jiao , Shengjian Qin , Jie Meng , Jiayu Song , Rongrong Yan , Hang Su , Hengbin Chen , Zixuan Shang , Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011
Dongqi Cai , Fuping Tian , Zerui Zhao , Yanjuan Zhang , Yue Dai , Feifei Huang , Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031
Jiayu Tang , Jichuan Pang , Shaohua Xiao , Xinhua Xu , Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
Zongfei YANG , Xiaosen ZHAO , Jing LI , Wenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306
Jing Wang , Pingping Li , Yuehui Wang , Yifan Xiu , Bingqian Zhang , Shuwen Wang , Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003
Hongxia Yan , Rui Wu , Weixu Feng , Yan Zhao , Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010
Pengzi Wang , Wenjing Xiao , Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090
Guowen Xing , Guangjian Liu , Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058
Jinfeng Chu , Yicheng Wang , Ji Qi , Yulin Liu , Yan Li , Lan Jin , Lei He , Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023
Qinjin DAI , Shan FAN , Pengyang FAN , Xiaoying ZHENG , Wei DONG , Mengxue WANG , Yong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326
a: CO; b:CO2; c: H2; d: CH4
(a): dry lignite; (b): 200 ℃ pretreated lignite