Citation: Zhou Mingdong, Du Haiwu, Gong Xinyu, Sun Jing. Progress in the Syntheses of Coumarin Derivatives through Tandem Radical Addition/Cyclization[J]. Chemistry, ;2019, 82(9): 789-795. shu

Progress in the Syntheses of Coumarin Derivatives through Tandem Radical Addition/Cyclization

  • Received Date: 29 May 2019
    Accepted Date: 28 June 2019

Figures(2)

  • Coumarin and its derivatives are a key class of heterocyclic lactone compounds, which are widely applied in the fields of organic synthesis, pharmaceutics, fluorescent materials, and so on. The development of a novel simple and efficient synthetic strategy of coumarins has been paid much attention. Recently, the tandem radical addition/cyclization of alkynoate with radical precursor afforded a simple, green and efficient method to synthesize coumarins. In this review, the recent progress in the synthesis of coumarins through tandem radical addition/cyclization is summarized.
  • 加载中
    1. [1]

      D Srikrishna, C Godugu, P Dubey. Mini-Rev. Med. Chem., 2018, 18:113~141. 

    2. [2]

       

    3. [3]

      Y Hu, Z Xu, S Zhang et al. Eur. J. Med. Chem., 2017, 136:122~130. 

    4. [4]

      M Kaur, D Choi. Chem. Soc. Rev., 2015, 44:58~77. 

    5. [5]

      F Medina, J Marrero, M Macias-Alonso et al. Nat. Prod. Rep., 2015, 32:1472~1507. 

    6. [6]

      T Silvia, M Miquel, Capo Xavier er al. Curr. Top. Med. Chem., 2017, 17:391~398.

    7. [7]

      P Anand, B Singh, N Singh. Bioorg. Med. Chem., 2012, 20:1175~1180. 

    8. [8]

      X Peng, G Damu, C Zhou et al. Curr. Pharm. Des., 2013, 19:3884~3930. 

    9. [9]

      X Mi, M Huang, J Zhang et al. Org. Lett., 2013, 15:6266~6269. 

    10. [10]

      L Y Dian, H Zhao, D Zhang-Negrerie et al. Adv. Synth. Catal., 2016, 358:2422~2426. 

    11. [11]

      F Jafarpour, M Abbasnia. J. Org. Chem., 2016, 81:11982~11986. 

    12. [12]

       

    13. [13]

      B Niu, W Zhao, Y Ding et al. J. Org. Chem., 2015, 80:7251~7257. 

    14. [14]

      C Mhiri, F Ladhar, R El Gharbi. Synth. Commun., 1999, 29:1451~1561. 

    15. [15]

      S K De, R A Gibbs. Synthesis, 2005, 1231~1234.

    16. [16]

      M M Garazd, Y L Garazd, V P Khilya. Chem. Nat. Compd., 2005, 41:245~271. 

    17. [17]

      T de A Fernandes, B G Vaz, M N Eberlin et al. J. Org. Chem., 2010, 75:7085~7091. 

    18. [18]

    19. [19]

       

    20. [20]

      T Liu, Q Ding, Q Zong et al. Org. Chem. Front., 2015, 2:670~673. 

    21. [21]

      K Yan, D Yang, W Wei et al. J. Org. Chem., 2015, 80:1550~1556. 

    22. [22]

      S Yang, H Tan, W Ji et al. Adv. Synth. Catal., 2017, 359:443~453. 

    23. [23]

      H Yi, G Zhang, H Wang et al. Chem. Rev., 2017, 117:9016~9085. 

    24. [24]

      X Mi, C Wang, M Huang et al. J. Org. Chem., 2015, 80:148~155. 

    25. [25]

      K Kawaai, T Yamaguchi, E Yamaguchi et al. J. Org. Chem., 2018, 83:1988~1996. 

    26. [26]

      Q Wang, C Yang, C Jiang. Org. Biomol. Chem., 2018, 16:8196~8204. 

    27. [27]

      Y Liu, Q Wang, C Zhou et al. Tetrahed. Lett., 2018, 59:2038~2041. 

    28. [28]

      W Wei, J Wen, D Yang et al. Chem. Commun., 2015, 51:768~771. 

    29. [29]

      W Yang, S Yang, P Li et al. Chem. Commun., 2015, 51:7520~7523. 

    30. [30]

      D Zheng, Y An, Z Li et al. Angew. Chem. Int. Ed., 2014, 53:2451~2454. 

    31. [31]

      D Zheng, J Yu, J Wu. Angew. Chem. Int. Ed., 2016, 55:11925~11929. 

    32. [32]

      X Wang, T Liu, D Zheng et al. Org. Chem. Front., 2017, 4:2455~2458. 

    33. [33]

      Z Chen, N W Liu, M Bolte et al. Green Chem., 2018, 20:3059~3070. 

    34. [34]

      H Ren, M Zhang, A Zhang. Tetrahedron, 2018, 74:4435~4444. 

    35. [35]

      X Mi, C Wang, M Huang et al. Org. Lett., 2014, 16:3356~3359. 

    36. [36]

      D Liu, J Chen, X Wang et al. Adv. Synth. Catal., 2017, 359:2773~2777. 

    37. [37]

      G Qiu, T Liu, Q Ding. Org. Chem. Front., 2016, 3:510~515. 

    38. [38]

      S Feng, J Li, Z Liu et al. Org. Biomol. Chem., 2017, 15:8820~8826. 

    39. [39]

      S Ni, J Cao, H Mei et al. Green Chem., 2016, 18:3935~3939. 

    40. [40]

      Y Li, Y Lu, G Qiu et al. Org. Lett., 2014, 16:4240~4243. 

    41. [41]

      L Chen, L Wu, W Duan et al. J. Org. Chem., 2018, 83:8607~8614. 

    42. [42]

      W Fu, M Zhu, G Zou et al. J. Org. Chem., 2015, 80:4766~4770. 

    43. [43]

      M Zhu, W Fu, Z Wang et al. Org. Biomol. Chem., 2017, 15:9057~9060. 

    44. [44]

      J Fang, W Fan, B Feng. Chin. J. Org. Chem., 2018, 38:2666~2672. 

    45. [45]

      T Liu, Q Ding, G Qiu et al. Tetrahedron, 2016, 72:279~284. 

    46. [46]

      L Debien, B Quiclet-Sire, S Zard. Acc. Chem. Res., 2015, 48:1237~1253. 

    47. [47]

      S Zard. Org. Biomol. Chem., 2016, 14:6891~6912. 

    48. [48]

      B Quiclet-Sire, S Zard. Top. Curr. Chem., 2006, 264:201~236.

    49. [49]

      C Pan, R Chen, W Shao et al. Org. Biomol. Chem., 2016, 14:9033~9039. 

    50. [50]

      S Feng, X Xie, W Zhang et al. Org Lett., 2016, 18:3846~3849. 

    51. [51]

      D Kong, L Cheng, H Wu et al. Org. Biomol. Chem., 2016, 14:2210~2217. 

    52. [52]

      Y Yu, S Zhuang, P Liu et al. J. Org. Chem., 2016, 81:11489~11495. 

    53. [53]

      W Zhang, C Yang, Y L Pan et al. Org. Biomol. Chem., 2018, 16:5788~5792. 

    54. [54]

      Y Zeng, D Tan, Y Chen et al. Org. Chem. Front., 2015, 2:1511~1515. 

    55. [55]

      W Liu, Y Zhang, H Guo. J. Org. Chem., 2018, 83:10518~10524. 

    56. [56]

      A Peng, Y Ding. J. Am. Chem. Soc., 2003, 125:15006~15007. 

    57. [57]

      A Peng, F Hao, B Li et al. J. Org. Chem., 2008, 73:9012~9015. 

    58. [58]

      Y Park, I Jeon, S Shin et al. J. Org. Chem., 2013, 78:10209~10220. 

    59. [59]

      J Seo, Y Park, I Jeon et al. Org. Lett., 2013, 15:3358~3361. 

    60. [60]

      Y Park, J Seo, S Park et al. Chem. Eur. J., 2013, 19, 16461~16468. 

    61. [61]

      Y Unoh, Y Hashinoto, D Takeda et al Org. Lett., 2013, 15:3258~3261. 

    62. [62]

      M Qiao, Y Liu, S Yao et al. J. Org. Chem., 2019, 84, 6798~6806.

  • 加载中
    1. [1]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    2. [2]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    3. [3]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    4. [4]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    5. [5]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    6. [6]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    7. [7]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    8. [8]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    9. [9]

      Yufan Pan Xue Ding Jiayu Lin Haiting Wu Hairong Huang Cuixue Chen Meiling Ye . Oil Cosmetics, Charming Chemistry: A Gradient Science Popularization Scheme for Cream Cosmetic Preparation. University Chemistry, 2025, 40(4): 382-389. doi: 10.12461/PKU.DXHX202406078

    10. [10]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    11. [11]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    12. [12]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    13. [13]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    14. [14]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    15. [15]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    16. [16]

      Zhanhui Yang Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032

    17. [17]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    18. [18]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    19. [19]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    20. [20]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

Metrics
  • PDF Downloads(5)
  • Abstract views(471)
  • HTML views(137)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return