Citation: Bo Liu, Tong Xu, Chunping Li, Junzhong Wang, Jie Bai. Progress of Heterogeneous Catalysts for Photocatalytic Suzuki Coupling Reaction[J]. Chemistry, ;2021, 84(1): 31-39. shu

Progress of Heterogeneous Catalysts for Photocatalytic Suzuki Coupling Reaction

  • Corresponding author: Jie Bai, baijie@imut.edu.cn
  • Received Date: 7 August 2020
    Accepted Date: 26 August 2020

Figures(8)

  • Suzuki cross-coupling reaction has been widely recognized as one of the most effective methods for the construction of C-C bonds and plays an important role in medicine, dye and electronics industry. In recent years, with the rapid development of photocatalytic technology and green organic synthetic chemistry, the use of renewable solar photocatalytic Suzuki cross-coupling reaction can not only solve energy and environmental problems, but also can obtain high yield of biphenyl compound at room temperature, so it has attracted the widespread attention of scientists. Compared with the homogeneous photocatalyst, the heterogeneous photocatalyst with advantages of good chemical stability and convenient recovery and recycling has become the key research object of photocatalytic Suzuki cross-coupling reaction. In this review, the basic principle of Suzuki cross-coupling reaction photocatalyzed by heterogeneous catalyst is summarized, and a series of researches on the preparation method, catalytic performance and recyclability of heterogeneous catalyst in photocatalytic Suzuki cross-coupling reaction are introduced.
  • 加载中
    1. [1]

      Rygus J P, Crudden C M. J. Am. Chem. Soc., 2017, 139(50): 18124~18137. 

    2. [2]

    3. [3]

      Li H B, Seechum C J, Colaco T J. ACS Catal., 2012, 2(6): 1147~1164. 

    4. [4]

      Bai C, Wang X, Tang S B, et al. Adv. Mater., 2018, 30(40): 1~7.

    5. [5]

       

    6. [6]

      Wang X N, Wang F L, Sang Y H, et al. Adv. Energy Mater., 2017, 7(23): 1~15.

    7. [7]

       

    8. [8]

       

    9. [9]

      Zhang S, Chang C, Huang Z. ACS Catal., 2015, 5(11): 6481~6488. 

    10. [10]

      Mehdi K, Mona H S. Catal. Commun., 2018, 111: 10~15. 

    11. [11]

      Siyavash K M, Seyedesahar M, Minoo D. J. Alloy Compd., 2019, 819: 1~13.

    12. [12]

      Wang N, Ma L X, Wang J, et al. ChemPlusChem, 2019, 84(8): 1164~1168. 

    13. [13]

      Mojtaba B, Reyhaneh K, Hamed M. J. Mater. Chem. A, 2019, 7(27): 16257~16266. 

    14. [14]

      Fahimeh F, Maasoumeh J, Abdolreza R. Catal. Lett., 2019, 149(6): 1595~1610. 

    15. [15]

      Jeet C, Ipsita N, Francis V. Chem. Eng. J., 2019, 358: 580~588. 

    16. [16]

    17. [17]

      Feng X, Li Z H. J. Photoch. Photobio. A, 2017, 337: 19~24. 

    18. [18]

      Sahar R, Abolfazl Z, Ghodsi M Z, et al. Catal. Sci. Technol., 2019, 9(14): 3820~3827. 

    19. [19]

      Liu B, Xu T, Li C P, et al. New J. Chem., 2020, 44(9): 3794~3801. 

    20. [20]

      Monah S, Zahra B. Chemistry Select, 2018, 3(6): 1898~1907.

    21. [21]

      Fu W Z, Xu X W, Wang W B, et al. ACS Sustain. Chem. Eng., 2018, 6(7): 8935~8944. 

    22. [22]

      Li Y L, Zhang Z Q, Pei L Y, et al. Appl. Catal. B, 2016, 190: 1~11. 

    23. [23]

      Jiao Z F, Zhai Z Y, Guo X N, et al. J. Phys. Chem. C, 2015, 119(6): 3238~3243. 

    24. [24]

       

    25. [25]

      Shin H H, Kang E, Park H, et al. J. Mater. Chem. A, 2017, 5(47): 24965~24971. 

    26. [26]

      Yim D B, Raza F, Park J H, et al. ACS Appl. Mater. Inter., 2019, 11(40): 36960~36969. 

    27. [27]

      Duarah R, Karak N. Ind. Eng. Chem. Res., 2019, 58(36): 16307~16319. 

    28. [28]

      Zhao X H, Xie J T, Liu X, et al. Appl. Organomet. Chem., 2019, 33(1): 1~10.

    29. [29]

      Xie A M, Zhang K, Wu F, et al. Catal. Sci. Technol., 2016, 6(6): 1764~1771. 

    30. [30]

      Wang Z J, Ghasimi S, Landfester K, et al. Chem. Mater., 2015, 27(6): 1921~1924. 

    31. [31]

      Sun D R, Li Z H. J. Phys. Chem. C, 2016, 120(35): 19744~19750. 

    32. [32]

      Sun D R, Xu M P, Jiang Y T, et al. Small Methods, 2018, 2(12): 1~7.

    33. [33]

      Wang F, Li C H, Chen H J, et al. J. Am. Chem. Soc., 2013, 135(15): 5588~5601. 

    34. [34]

      Yoshii T, Kuwahara Y, Mori K, et al. J. Phys. Chem. C, 2019, 123(40): 24575~24583. 

    35. [35]

      Ma T, Liang F. J. Phys. Chem. C, 2020, 124(14): 7812~7822. 

    36. [36]

    37. [37]

      Liu S H, Tang W T, Lin W X, et al. Int. J. Hydrogen Energ., 2017, 42(38): 24006~24013. 

    38. [38]

      Gogoi D, Namdeo A, Golder A K, et al. Int. J. Hydrogen Energ., 2020, 45(4): 2729~2744. 

    39. [39]

      Singhal N, Kumar U. Mol. Catal., 2017, 439: 91~99. 

    40. [40]

      Cheng G, Wei Y, Xiong J Y, et al. J. Alloy Compd., 2017, 723: 948~959. 

    41. [41]

      Toyoda T, Shen Q, Hironaka M, et al. J. Phys. Chem. C, 2018, 122(51): 29200~29209. 

    42. [42]

      Zhang R, Wang Q, Zhang J, et al. Nanotechnology, 2019, 30(43): 1~19.

    43. [43]

      Liu Z, Menendez C, ShenoY J, et al. Nano Energy, 2020, 72: 1~10.

    44. [44]

      Chen Y N, Feng L. J. Photoch. Photobio. B, 2020, 205: 1~34.

    45. [45]

      Sharma K, Kumar M, BhallA V. Chem. Commun., 2015, 51: 12529~12532. 

    46. [46]

      Singh G, Kumar M, Sharma K, et al. Green Chem., 2016, 18(11): 3278~3285. 

    47. [47]

      Prajapati P K, Saini S, Jain S L. J. Mater. Chem. A, 2020, 8(10): 5246~5254. 

  • 加载中
    1. [1]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    2. [2]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    3. [3]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    4. [4]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    5. [5]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    8. [8]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    9. [9]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    11. [11]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    12. [12]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    15. [15]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    16. [16]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    17. [17]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    18. [18]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    19. [19]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    20. [20]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

Metrics
  • PDF Downloads(31)
  • Abstract views(1781)
  • HTML views(460)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return