Citation: Yuan An, Tan Long, Liu Li, Ying Jin, Tang Hao, Sun Runguang. Research Progress of Li2S-P2S5 Electrolytes and Their Application in Solid-State Lithium-Ion Batteries[J]. Chemistry, ;2019, 82(8): 706-716. shu

Research Progress of Li2S-P2S5 Electrolytes and Their Application in Solid-State Lithium-Ion Batteries

  • Corresponding author: Tang Hao, htang@ncu.edu.cn
  • Received Date: 28 February 2019
    Accepted Date: 8 May 2019

Figures(5)

  • All-solid-state lithium-ion batteries have been widely used in portable electronic devices due to their advantages of good safety performance, high energy density, wide working-temperature range, etc. The solid electrolytes are the key material of all-solid-state lithium-ion batteries. Among various electrolytes, the sulfide-based materials have the characteristics of high ionic conductivity, wide electrochemical window, low grain boundary resistance and easy film formation, and is considered to be the most promising electrolyte in all-solid-state batteries. In this paper, we focused on the recent progress in the solid electrolytes with respect to the preparation, characterization and modification of Li2S-P2S5 electrolytes, and stability/compatibility of the interface between the solid electrolyte and the electrode. Moreover, the performance of these solid electrolyte related all-solid-state lithium-ion batteries are also reviewed.
  • 加载中
    1. [1]

      N Armand, J M Tarascon. Nature, 2008, 451:652~657. 

    2. [2]

      P Simon, Y Gogotsi. Nat. Mater., 2008, 7:845~854. 

    3. [3]

      M Y Gao, C C Shih, S Y Pan et al. J. Mater. Chem. A, 2018, 6(42):20546~20563. 

    4. [4]

      M Tatsumisago, A Hayashi. Int. J. Appl. Glass Sci., 2014, 5(3):226~235. 

    5. [5]

      J Kim, Y Yoon, J Lee et al. J. Power Sources, 2011, 196:6920~6923. 

    6. [6]

      N Kamaya, K Homma, Y Yamakawa et al. Nat. Mater., 2011, 10:682~686. 

    7. [7]

      M Tatsumisago, K Hirai, T Minami et al. J. Ceram. Soc. Jpn., 1993, 101(11):1315.

    8. [8]

      S Kondo, K Takada, Y Yamamura. Solid State Ionics, 1992, 53~56:1183~1186. 

    9. [9]

      M Murayama, N Sonoyama, A Yamada et al. Solid State Ionics, 2004, 170:173~180. 

    10. [10]

      K Minami, F Mizuno, A Hayashi et al. Solid State Ionics, 2007, 178:837~841. 

    11. [11]

      Z Liu, Y Tang, Y Wang et al. J. Power Sources, 2014, 260:264~267. 

    12. [12]

      X Sun, Y Sun, F Cao et al. J. Alloys Compd., 2017, 727:1136~1141. 

    13. [13]

      K Minami, A Hayashi, M Tatsumisago. Solid State Ionics, 2008, 179:1282~1285. 

    14. [14]

      R Kanno, M Murayama. J. Electrochem. Soc., 2001, 148:A742~A746. 

    15. [15]

      S Chen, D Xie, G Liu et al. Energy Storage Mater., 2018, 14:58~74. 

    16. [16]

      A Hayashi, K Minami, S Ujiie et al. J. Non-Crystal Solids, 2010, 356:2670~2673. 

    17. [17]

      M Tasumisago, F Mizuno, A Hayashi. J. Power Sources, 2006, 159:193~199. 

    18. [18]

      F Mizuno, A Hayashi, K Tadanaga et al. Solid State Ionics, 2006, 177:2721~2725. 

    19. [19]

      S Ito, M Nakakita, Y Aihara et al. J. Power Sources, 2014, 271:342~345. 

    20. [20]

      R C Xu, X H Xia, Z J Yao et al. Electrochim. Acta, 2016, 219:235~240. 

    21. [21]

      S Teragawa, K Aso, K Tadanaga et al. J. Mater. Chem. A, 2014, 2:5095~5099. 

    22. [22]

      S Teragawa, K Aso, K Tadanaga et al. J. Power Sources, 2014, 248:939~942. 

    23. [23]

      X Y Yao, D Liu, C S Wang et al. Nano Lett., 2016, 16:7148~7154. 

    24. [24]

      M Calpa, N C R Navarro, A Miura et al. RSC Adv., 2017, 7:46499~46504. 

    25. [25]

      N H H Phuc, M Totani, K Morikawa et al. Solid State Ionics, 2016, 288:240~243. 

    26. [26]

      S Yubuchi, S Teragawa, K Aso et al. J. Power Sources, 2015, 293:941~945. 

    27. [27]

      T Ohtomo, A Hayashi, M Tatsumisago et al. J. Non-Cryst. Solids, 2013, 364:57~61. 

    28. [28]

      T Ohtomo, A Hayashi, M Tatsumisago et al. J. Solid State Electrochem., 2013, 17:2551~2557. 

    29. [29]

      S Ujiie, A Hayashi, M Tatsumisago. Solid State Ionics, 2012, 211:42~45. 

    30. [30]

      S Ujiie, A Hayashi, M Tatsumisago. J. Solid State Electrochem., 2013, 17:675~680. 

    31. [31]

      A Hayashi, H Muramatsu, T Ohtomo. J. Mater. Chem. A, 2013, 1:6320~6326. 

    32. [32]

      F Mizuno, T Ohtomo, A Hayashi et al. Solid State Ionics, 2006, 177:2753~2757. 

    33. [33]

      R Xu, X Xia, X Wang et al. J. Mater. Chem., 2017, A5:2829~2834. 

    34. [34]

      Y C Tao, S Chen, D Liu et al. J. Electrochem. Soc., 2016, 163(2):A96~A101. 

    35. [35]

      Y Zhang, K Chen, Y Shen et al. Solid State Ionics, 2017, 305:1~6. 

    36. [36]

      Y Sun, K Suzuki, K Hara et al. J. Power Sources, 2016, 324:798~803. 

    37. [37]

      Z Q Liu, Y F Tang, X J Lyu et al. Ceram. Int., 2014, 40:15497~15501. 

    38. [38]

      P Lu, F Ding, Z Xu et al. J. Power Sources, 2017, 356:163~171. 

    39. [39]

      J E Trevey, Y S Jung, S Lee. Electrochim. Acta, 2011, 56:4243~4247. 

    40. [40]

      S Ujiie, T Inagaki, A Hayashi et al. Solid State Ionics, 2014, 263:57~61. 

    41. [41]

      K Minami, A Hayashi, S Ujiie et al. Solid State Ionics, 2011, 192:122~125. 

    42. [42]

      M Eom, S Choi, S Son et al. J. Power Sources, 2016, 331:26~31. 

    43. [43]

      T Ohtomo, A Hayashi, M Tatsumisago et al. Electrochemistry, 2013, 81(6):428~431. 

    44. [44]

      Y Ooura, N Machida, M Naito et al. Solid State Ionics, 2012, 225:350~353. 

    45. [45]

      K Minami, A Hayashi, M Tatsumisago. J. Non-Cryst. Solids, 2010, 356:2666~2669. 

    46. [46]

      F Mizuno, A Hayashi, K Tadanaga et al. J. Electrochem. Soc., 2005, 152(8):A1499~A1503. 

    47. [47]

      J K Hong, J H Lee, S M Oh. J. Power Sources, 2002, 111:90~96. 

    48. [48]

      J Kim, M Eom, S Noh et al. Electron. Mater. Lett., 2012, 8(2):209~213. 

    49. [49]

      Y Fujii, A Miura, N C R Navarro et al. Electrochim. Acta, 2017, 241:370~374. 

    50. [50]

      J E Trevey, Y S Jung, S H Lee. J. Power Sources, 2010, 195:4984~4989. 

    51. [51]

      G Oh, M Hirayama, O Kwon et al. Chem. Mater., 2016, 28:2634~2640. 

    52. [52]

      J Kim, M Kim, S Noth et al. Ceram. Int., 2016, 42:2140~2146. 

    53. [53]

       

    54. [54]

      G Peng, X Yao, H Wan et al. J. Power Sources, 2016, 307:724~730. 

    55. [55]

      A Sakuda, H Kitaura, A Hayashi et al. Electrochem. Solid-State Lett., 2008, 11(1):A1~A3. 

    56. [56]

      Y Sakurai, A Sakuda, A Hayashi et al. Solid State Ionics, 2011, 182:59~63. 

    57. [57]

      A Sakuda, N Nakamoto, H Kitaura et al. J. Mater. Chem., 2012, 22:15247~15254. 

    58. [58]

      K Takada. IEICE Technical Report, 2008, 107:43~47.

    59. [59]

      N Ohta, K Takada, K Zhang et al. Adv. Mater., 2006, 18(17):2226~2229. 

    60. [60]

      M Sakuma, K Suzuki, M Hirayama et al. Solid State Ionics, 2016, 285:101~105. 

    61. [61]

      M Ogawa, R Kanda, K Yoshida et al. J. Power Sources, 2012, 205:487~490. 

    62. [62]

      Y Seino, T Ota, K Takada et al. Energy Environ. Sci., 2014, 7(2):627~631. 

    63. [63]

       

    64. [64]

      P G Bruce, C A Vincent. J. Electroanal. Chem., 1987, 225:1~17. 

    65. [65]

      I I Olsen, R Koksbang, E Skou. Electrochim. Acta, 1995, 40:1701~1706. 

    66. [66]

      P R Sorensen, T Jacobesn. Electrochim. Acta, 1982, 27:1671~1675. 

  • 加载中
    1. [1]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    2. [2]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    3. [3]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    4. [4]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    5. [5]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    6. [6]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    7. [7]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    9. [9]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    10. [10]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    11. [11]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    12. [12]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    13. [13]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    14. [14]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    15. [15]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    16. [16]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    17. [17]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    18. [18]

      Weiping GuoYing ZhuHong-Hua CuiLingyun LiYan YuZhong-Zhen LuoZhigang Zouβ-Pb3P2S8: A new optical crystal with exceptional birefringence effect. Chinese Chemical Letters, 2025, 36(2): 110256-. doi: 10.1016/j.cclet.2024.110256

    19. [19]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    20. [20]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

Metrics
  • PDF Downloads(13)
  • Abstract views(1234)
  • HTML views(187)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return