Citation: Meng Xiangyu, Wang Yutong, Chen Guanhua, Wang Zhengzheng, Huang Jin, Xu Hengyi. Application of Vancomycin in Detection of Foodborne Pathogens[J]. Chemistry, ;2019, 82(12): 1067-1072. shu

Application of Vancomycin in Detection of Foodborne Pathogens

  • Corresponding author: Xu Hengyi, kidyxu@163.com
  • Received Date: 27 May 2019
    Accepted Date: 30 September 2019

Figures(1)

  • Foodborne pathogen contamination is one of the main factors causing food safety problems, and it poses a serious threat to human health. Vancomycin is a small molecule with specific recognition function of gram-positive bacteria, which can be modified on magnetic nanoparticles, to obtain the ability of capturing target bacteria. Combined with other detection methods, vancomycin can be used to achieve the purpose of capturing and detecting of gram-positive bacteria. In this paper, the research progress of vancomycin-functionalized magnetic beads in the isolation and detection of Gram-positive bacteria was reviewed. The effects of different modification ways and detection methods of vancomycin on the detection results were analyzed and compared. Finally, the problems of vancomycin in the detection of foodborne pathogenic bacteria were pointed out, and the future application of vancomycin was prospected.
  • 加载中
    1. [1]

      G A Suaifan, S Alhogail, M Zourob. Biosens. Bioelectron., 2017, 90: 230~237. 

    2. [2]

       

    3. [3]

       

    4. [4]

      J W Law, N S Mutalib, K G Chan et al. Front. Microbiol., 2014, 5: 770~782.

    5. [5]

       

    6. [6]

       

    7. [7]

      Y Pan, X Du, F Zhao et al. Chem. Soc. Rev., 2012, 41: 2912~2942. 

    8. [8]

      S Yang, H Ouyang, X Su et al. Biosens. Bioelectron., 2016, 78: 174~180. 

    9. [9]

      M Zhu, W Liu, H Liu et al. ACS Appl. Mater. Interf., 2015, 7: 12873~12881. 

    10. [10]

      X Y Meng, F L Li, F Li et al. Sens. Actuat. B, 2017, 247: 546~555. 

    11. [11]

      M M Hassan, A Ranzoni, M A Cooper. Biosens. Bioelectron., 2018, 99: 150~155. 

    12. [12]

      X Meng, G Yang, F Li et al. ACS Appl. Mater. Interf., 2017, 9(25): 21464~21472. 

    13. [13]

      X Su, M Wang, H Ouyang et al. Sens. Actuat. B, 2017, 241: 255~261. 

    14. [14]

       

    15. [15]

      X Wu, C Xu, R A Tripp et al. Analyst, 2013, 138: 3005~3012. 

    16. [16]

      H J Chung, T Reiner, G Budin et al. ACS Nano, 2011, 5: 8834~8841. 

    17. [17]

       

    18. [18]

      G Qi, L Li, F Yu et al. ACS Appl. Mater. Interf., 2013, 5: 10874~10881. 

    19. [19]

      J Shepherd, P Sarker, S Rimmer et al. Biomaterials, 2011, 32: 258~267. 

    20. [20]

      A J Kell, G Stewart, S Ryan et al. ACS Nano, 2008, 2: 1777~1788. 

    21. [21]

      A Esmaeili, S Ghobadianpour. Int. J. Pharm., 2016, 501: 326~330. 

    22. [22]

      X Huang, Z Xu, Y Mao et al. Biosens. Bioelectron., 2015, 66: 184~190. 

    23. [23]

      X Yang, X Zhou, M Zhu et al. Biosens. Bioelectron., 2017, 91: 238~245. 

    24. [24]

      Y Zhang, J Liu, T Liu et al. Biosens. Bioelectron., 2016, 77: 111~115. 

    25. [25]

      M Magliulo, P Simoni, M Guardigli et al. J. Agric. Food Chem., 2007, 55: 4933~4939. 

    26. [26]

      K Dockens, M Demeter, S Johnston et al. Present. Corrosion, 2017, 3: 9414~9422.

    27. [27]

      J H Calvo, R Osta, P Zaragoza. J. Agric. Food Chem., 2002, 50: 5265~5267. 

    28. [28]

      C Sartori, R Boss, I Ivanovic et al. J. Dairy Sci., 2017, 100: 7834~7845. 

    29. [29]

       

    30. [30]

      H Gao, S Yang, J Han et al. Chem. Commun., 2015, 51: 12497~12500. 

    31. [31]

      D Cheng, M Yu, F Fu et al. Anal. Chem., 2015, 88: 820~825.

    32. [32]

      W Kong, J Xiong, H Yue et al. Anal. Chem., 2015, 87: 9864~9868. 

    33. [33]

      Z Yang, Y Wang, D Zhang. Biosens. Bioelectron., 2017, 98: 248~253. 

    34. [34]

      Q You, X Zhang, F Wu et al. Sens. Actuat. B, 2019, 281: 408~414. 

    35. [35]

      Y Pang, N Wan, L Shi et al. Anal. Chim. Acta, 2019, 1077: 288~296. 

    36. [36]

      S Singh, A Moudgil, N Mishra et al. Biosens. Bioelectron., 2019, 136: 23~30. 

  • 加载中
    1. [1]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    2. [2]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    3. [3]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    4. [4]

      Huaihao CHENLingwen ZHANGYukun CHENJianjun ZHANG . A water-stable metal-organic framework probe for Al3+/Ga3+/In3+ detection. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2601-2608. doi: 10.11862/CJIC.20250184

    5. [5]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    6. [6]

      Jie WEIQing ZHOUDandan DINGXiang JINGFei LI . Photothermal toxicity of Prussian blue nanoparticles to cervical cancer cells. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2345-2357. doi: 10.11862/CJIC.20240435

    7. [7]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    8. [8]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    9. [9]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    10. [10]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    11. [11]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    12. [12]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    13. [13]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    14. [14]

      Lin LILe CHENLingjie HOUJiaqi JINGJiayu DINGTao ZHOURuiping ZHANG . Smartphone-assisted fluorescent silver nanoclusters as ratiometric sensor for visual colorimetric detection of sulfide. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2261-2271. doi: 10.11862/CJIC.20250130

    15. [15]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    16. [16]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    17. [17]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    18. [18]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    19. [19]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    20. [20]

      Peipei SunJinyuan ZhangYanhua SongZhao MoZhigang ChenHui Xu . Built-in Electric Fields Enhancing Photocarrier Separation and H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-0. doi: 10.3866/PKU.WHXB202311001

Metrics
  • PDF Downloads(9)
  • Abstract views(1537)
  • HTML views(333)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return