Citation: Wang Yutong, Li Hui, Yang Guotai, Meng Xiangyu, He Lihua, Xu Hengyi. Progress in Magnetic Separation Detection of Foodborne Pathogentic Based on Recognition Molecule[J]. Chemistry, ;2019, 82(1): 27-31. shu

Progress in Magnetic Separation Detection of Foodborne Pathogentic Based on Recognition Molecule

  • Corresponding author: Xu Hengyi, kidyxu@163.com
  • Received Date: 12 June 2018
    Accepted Date: 16 September 2018

Figures(2)

  • Foodborne pathogenic bacteria are harmful to human health. However, due to its small amount in the food matrix, the pathogenic bacteria usually need to be enriched before detection. As a common pretreatment, magnetic separation shows excellent application prospect in the enrichment and separation of pathogenic bacteria. There are many kinds of recognition agents used in magnetic separation. In this paper, the application of several main recognition agents, including antibodies, antibiotics, nucleic acids and lectins in application of magnetic separation were reviewed.
  • 加载中
    1. [1]

      X Su, M Wang, H Ouyang et al. Sens. Actuat. B, 2017, 241:255~261. 

    2. [2]

      X Meng, G Yang, F Li et al. ACS Appl. Mater. Interf., 2017, 9(25):21464~21472. 

    3. [3]

      F Li, F Li, D Luo et al. Anal. Chim. Acta, 2018, 1017:48~56. 

    4. [4]

      M Xu, R Wang, Y Li. Talanta, 2016, 148:200~208. 

    5. [5]

      Y Mao, X Huang, S Xiong et al. Food Control., 2016, 59:601~608. 

    6. [6]

      S Yang, M Wang, L Wang et al. Sens. Actuat. B, 2017, 252:1003~1009. 

    7. [7]

      M Zhu, W Liu, H Liu et al. ACS Appl. Mater. Interf., 2015, 7(23):12873~12881. 

    8. [8]

      C Wang, K Zhang, Z Zhou et al. Int. J. Nanomed., 2017, 12, 3077~3094.

    9. [9]

      N Duan, S Wu, C Zhu et al. Anal. Chim. Acta, 2012, 723:1~6. 

    10. [10]

      V C Ozalp, G Bayramoglu, Z Erdem et al. Anal. Chim. Acta, 2015, 853:533~540. 

    11. [11]

      H Yang, H Zhou, H Hao et al. Sens. Actuat. B, 2016, 229:297~304. 

    12. [12]

      H Lin, Q Lu, S Ge et al. Sens. Actuat. B, 2010, 147(1):343~349. 

    13. [13]

      L H Liu, H Dietsch, P Schurtenberger et al. Bioconjugate Chem., 2009, 20(7):1349~1355. 

    14. [14]

      C Yan, Y Zhang, H Yang et al. Talanta., 2017, 170:291~297. 

    15. [15]

      T Laube, P Cortés, M Llagostera et al. Appl. Microbiol. Biotechnol., 2014, 98(4):1795~1805. 

    16. [16]

      L Yang, W Deng, C Cheng et al. ACS Appl. Mater. Interf., 2018, 10(4):3441~3448. 

    17. [17]

      I H Cho, P Bhandari, P Patel et al. Biosens. Bioelectron., 2015, 64:171~176. 

    18. [18]

      Y J Sung, H J Suk, H Sung et al. Biosens. Bioelectron., 2013, 43:432~439. 

    19. [19]

      M Pal, S Lee, D Kwon et al. Anal. Chim. Acta, 2017, 952:81~87. 

    20. [20]

      S Yang, H Ouyang, X Su et al. Biosens. Bioelectron., 2016, 78:174~180. 

    21. [21]

      X Meng, F Li, F Li et al. Sens. Actuat. B, 2017, 247:546~555. 

    22. [22]

      X Yang, X Zhou, M Zhu et al. Biosens. Bioelectron., 2017, 91:238~245. 

    23. [23]

      L Chen, F S Razavi, A Mumin et al. RSC Adv., 2013, 3(7):2390~2397. 

    24. [24]

      M Wang, Y Wu, Y He et al. Anal. Chim. Acta, 2017, 987:91~97. 

    25. [25]

      L Zhang, R Huang, W Liu et al. Biosens. Bioelectron., 2016, 86:1~7. 

    26. [26]

      V C Ozalp, G Bayramoglu, M Kavruk et al. Anal. Biochem., 2014, 447:119~125. 

    27. [27]

      Y Wang, Z Ye, C Si et al. Food Chem., 2013, 136(3/4):1303~1308.

    28. [28]

      M Y Zhuang, C Wang, M Q Xu et al. Int. J. Biol. Macromol., 2017, 104:63~69. 

    29. [29]

      X He, L Zhou, D He et al. Analyst, 2011, 136(20):4183~4191. 

    30. [30]

      M V Mikaelyan, G Poghosyan, O D Hendrickson et al. Anal. Chim. Acta, 2017, 981:80~85. 

    31. [31]

      J BHarito, A T Campbell, K R Tysnes et al. Water Res., 2017, 127:68~76. 

    32. [32]

      J C Liu, P J Tsai, Y C Lee et al. Anal. Chem., 2008, 80(14):5425~5432. 

    33. [33]

      F Y Kuo, W L Lin, Y C Chen et al. Nanoscale, 2016, 8(17):9217~9225. 

    34. [34]

      W J Chen, Y C Chen. Nanomedicine, 2010, 5(10):1585~1593. 

    35. [35]

      K El-Boubbou, C Gruden, X Huang et al. J. Am. Chem. Soc., 2007, 129(44):13392~13393. 

    36. [36]

      S Liébana, D A Spricigo, M P Corteés et al. Anal. Chem., 2013, 85(6):3079~3086. 

    37. [37]

       

  • 加载中
    1. [1]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    2. [2]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    3. [3]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    4. [4]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    5. [5]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    6. [6]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    7. [7]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    8. [8]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    9. [9]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    10. [10]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    11. [11]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    12. [12]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    13. [13]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    14. [14]

      Shui Hu Houjin Li Zhenming Zang Lianyun Li Rong Lai . Integration of Science and Education Promotes the Construction of Undergraduate-to-Master’s Integration Experimental Courses: A Case Study on the Extraction, Separation and Identification of Artemisinin from Artemisia annua. University Chemistry, 2024, 39(4): 314-321. doi: 10.3866/PKU.DXHX202310063

    15. [15]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    16. [16]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    17. [17]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    18. [18]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    19. [19]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    20. [20]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

Metrics
  • PDF Downloads(5)
  • Abstract views(235)
  • HTML views(92)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return