Citation: YANG Zhi-rong, MENG Qing-yan, HUANG Jie-jie, WANG Zhi-qing, LI Chun-yu, FANG Yi-tian. Interaction between Shenmu coal and different caking coals during co-pyrolysis[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(6): 641-648. shu

Interaction between Shenmu coal and different caking coals during co-pyrolysis

  • Corresponding author: HUANG Jie-jie, huangjj@sxicc.ac.cn
  • Received Date: 12 March 2018
    Revised Date: 9 May 2018

    Fund Project: The project was supported by the National Key Research and Development Program (2016YFB 0600401-01)the National Key Research and Development Program 2016YFB 0600401-01

Figures(7)

  • The pyrolysis characteristic of blended coal and the interaction between Shenmu coal (SMC) and caking coals(Fat coal-FM, gas coal-QM, coking coal-JM) were studied by temperature-programmed thermobalance. The pyrolysis kinetics were analyzed using distributed activation energy model (DAEM). The results indicate that the concentrated release rate of moisture increases and temperature corresponding to the release peak of volatile matter(tmax) for coal blends decreases as increasing SMC blending ratio. The inhibition of blended coal is reduced as increasing SMC blending ratio when pyrolysis temperature surpasses the solidified temperature of metaplast (>460-480 ℃), indicating a poor bonding behavior of metaplast. In addition, the inhibition of blended coal is enhanced and its bonding behavior is improved with increasing heating rate. The effects of relieving swelling pressure and improving dispersity of metaplast gradually reduce as deepening the metamorphic degree of caking coal from QM, FM to JM, since the corresponding temperature for promoting interaction (release of volatile) is below, within, above the plastic temperature range of caking coals, respectively. A comparison of experimental and calculated distributed activation energy model confirms the interaction mechanism of blended coal during co-pyrolysis.
  • 加载中
    1. [1]

      LI Ying. The present situation and development proposal of coking industry in China[D]. Beijing: University of International Business and Economics, 2006.

    2. [2]

      SHEN Da-yong. Suggestions and status of Xuzhou coking industry[J]. China Resour Compr Util, 2016,34(5):46-48.  

    3. [3]

      YE C, WANG Q H, LUO Z Y, XIE G L, JIN K, SIYIL M, CEN K F. Characteristics of coal partial gasification on a circulating fluidized bed reactor[J]. Energy Fuels, 2017,31:2557-2564. doi: 10.1021/acs.energyfuels.6b02889

    4. [4]

      MENG Qing-yan, YANG Zhi-rong, HUANG Jie-jie, WANG Zhi-qing, LI Chun-yu, FANG Yi-tian. Caking property of Shenmu coal and caking coal blending coals for coke-making[J]. Coal Convers, 2017,40(5):45-49.  

    5. [5]

      BAI Xiao-yan, PEI Xian-feng, WANG Yan. Technology and economic analysis on coking enterprise transformation to produce coke for gasification[J]. Coal Qual Technol, 2016,S1:16-19.  

    6. [6]

      XU Xiu-li. Technical and economical discussion about gasified coke production and gas making by coke particle[J]. Coal Process Compr Util, 2016,6:37-40.  

    7. [7]

      YANG Z R, MENG Q Y, HUANG J J, WANG Z Q, LI C Y, FANG Y T. A particle-size regulated approach to producing high strength gasification-coke by blending a larger proportion of long flame coal[J]. Fuel Process Technol, 2018,177:101-108. doi: 10.1016/j.fuproc.2018.04.024

    8. [8]

      DUFFY J, MAHONEY M, STEEL M. Influence of coal thermoplastic properties on coking pressure generation:Part 1- A study of binary coal blends and specific additives[J]. Fuel, 2010,89:1590-1599. doi: 10.1016/j.fuel.2009.08.031

    9. [9]

      CASCAL M, DIAZ-FAES E, ALVAREZ R. Influence of the permeability of the coal plastic layer on coking pressure[J]. Fuel, 2006,85:281-288. doi: 10.1016/j.fuel.2005.06.009

    10. [10]

      NYATHI M S, MASTALERZ M, KRUSE R. Influence of coke particle size on pore structural determination by optical microscopy[J]. Int J Coal Geol, 2013,118:8-14. doi: 10.1016/j.coal.2013.08.004

    11. [11]

      WU Z Q, WANG S Z, ZHAO J, CHEN L, MENG H Y. Synergistic effect on thermal behavior during co-pyrolysis of lignocellulosic biomass model components blend with bituminous coal[J]. Bioresource Technol, 2014,169:220-228. doi: 10.1016/j.biortech.2014.06.105

    12. [12]

      MIURA K, MAKI T. A simple method for estimating f(E) and k0(E) in the distributed activation energy model[J]. Energy Fuels, 1998,12(5):864-869. doi: 10.1021/ef970212q

    13. [13]

      VAND V. A theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum[J]. Proc Phys Soc, 1942,55(3):222-246.

    14. [14]

      PITT G J. The kinetics of the evolution of volatile products from coal[J]. Fuel, 1962,41(3):267-274.  

    15. [15]

      CHEN S J, YANG Z, CHEN L, TAO X X, TANG L F, HE H. Wetting thermodynamics of low-rank coal and attachment in flotation[J]. Fuel, 2017,207:214-225. doi: 10.1016/j.fuel.2017.06.018

    16. [16]

      YAO Na. Experimental study on the behavior of biomass fast pyrolysis[D]. Harbin: Harbin Institute of Technology, 2008.

    17. [17]

      WANG Lin-jun, MA Yang, LIU Jia-xun, JIANG Xiu-min. Study of superfine pulverized coal pyrolysis and thermodynamic parameters[J]. Boiler Technol, 2015,46(6):73-78.  

    18. [18]

      XUE Wei. Biomass pyrolysis with lignite thermogravimetric experiment research and dynamic analysis[D]. Kunming: Kunming University of Science and Technology, 2013.

  • 加载中
    1. [1]

      Dan LUOXingcheng LIUDong LITong CHANG . Metal-support interaction effects on CO activation over Con/SiO2 catalysts. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2337-2344. doi: 10.11862/CJIC.20250003

    2. [2]

      Yongxin LIUXingchen LIHongjia LIUDanni LITao ZHANGXi CHEN . Enhancement effect of Fe3O4 conversion to MIL-100(Fe) on activation of persulfate for degradation of antibiotic. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2503-2513. doi: 10.11862/CJIC.20250169

    3. [3]

      Zihan ChengKai JiangJun JiangHenggang WangHengwei Lin . Achieving thermal-stimulus-responsive dynamic afterglow from carbon dots by singlet-triplet energy gap engineering through covalent fixation. Acta Physico-Chimica Sinica, 2026, 42(2): 100169-0. doi: 10.1016/j.actphy.2025.100169

    4. [4]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    5. [5]

      Rohit KumarAnita SudhaikAftab Asalam Pawaz KhanVan Huy NeguyenArchana SinghPardeep SinghSourbh ThakurPankaj Raizada . Designing tandem S-scheme photo-catalytic systems: Mechanistic insights, characterization techniques, and applications. Acta Physico-Chimica Sinica, 2025, 41(11): 100150-0. doi: 10.1016/j.actphy.2025.100150

    6. [6]

      Yanan Fan Jingjing Huang . Interactive Electronic Courseware Facilitates the Development of Integrated Undergraduate-Graduate Instrumental Analysis Laboratory Courses: A Case Study of UV-Vis Spectroscopy Analysis Experiment. University Chemistry, 2025, 40(10): 282-287. doi: 10.12461/PKU.DXHX202411009

    7. [7]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    8. [8]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    11. [11]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    12. [12]

      Zehua Zhao Xiaoyan An Jinrong Xu Ling Yang Hao Zhao Zhongyun Wu . Independent Development and Application of Calorimetric Experiment Data Acquisition and Processing Software. University Chemistry, 2025, 40(11): 402-408. doi: 10.12461/PKU.DXHX202505045

    13. [13]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    14. [14]

      Hailang JIAYujie LUPengcheng JI . Preparation and properties of nitrogen and phosphorus co-doped graphene carbon aerogel supported ruthenium electrocatalyst for hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2327-2336. doi: 10.11862/CJIC.20250021

    15. [15]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    16. [16]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    17. [17]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    18. [18]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    19. [19]

      Xuexia He Zhibin Lei Pei Chen Qi Li Weiyu Deng Peng Hu . 以“溶度积规则”指导电荷转移共晶沉淀析出——材料类专业无机化学教学改革案例. University Chemistry, 2025, 40(8): 1-10. doi: 10.12461/PKU.DXHX202410099

    20. [20]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

Metrics
  • PDF Downloads(2)
  • Abstract views(2314)
  • HTML views(241)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return