Citation: Rui-Wen Yan, Bao-Kang Jin. Study of the electrochemical oxidation mechanism of formaldehyde on gold electrode in alkaline solution[J]. Chinese Chemical Letters, ;2013, 24(2): 159-162. shu

Study of the electrochemical oxidation mechanism of formaldehyde on gold electrode in alkaline solution

  • Corresponding author: Bao-Kang Jin, 
  • Received Date: 7 November 2012
    Available Online: 31 December 2012

    Fund Project: Doctoral Program Foundation of the Ministry of Education of China, the Foundation of Scientific Innovation Team of Anhui Province (No. 2006KJ007TD) (No. NECT-07-0002) and the 211 Project of Anhui University. (No. 2006KJ007TD)

  • The oxidation of formaldehyde in alkaline solution was studied by in situ rapid-scan time-resolved IR spectroelectrochemistry (RS-TR-FTIRS) method. In the potential range between 0.7 V and 0.2 V, the gem-diol anions were oxidized (according to the 2765 cm-1 of vH-O and 1034 cm-1 of vCO downward IR bands) and the formate ions appeared (according to the 1588, 1357 cm-1 of the asymmetric and symmetric vOCO and 1380 cm-1 of δC-H upward IR bands) in aqueous solution. It was also confirmed that gem-diol anion was oxidized (according to the 2026, 1034 cm-1 downward IR bands) to formate ions (according to the 1595, 1357, 1380 cm-1 upward IR bands) and water (according to the 3427 cm-1 of vH-O upward IR band) in heavy water solution. The results illustrated that formaldehyde formed gem-diol anion in alkaline solution and was absorbed on the electrode surface; then gem-diol anion was oxidized to formate ions and water.
  • 加载中
    1. [1]

      [1] T. Zerihun, P. Gründler, Oxidation of formaldehyde, methanol, formic acid and glucose at ac heated cylindrical Pt microelectrodes, J. Electroanal. Chem. 441 (1998) 57-63.

    2. [2]

      [2] R. Parsons, T.V. Noot, The oxidation of small organic molecules: a survey of recent fuel cell related research, J. Electroanal. Chem. 257 (1988) 9-45.

    3. [3]

      [3] N.M. Markovic, J.P.N. Ross, Surface science studies of model fuel cell electrocatalysts, Surf. Sci. Rep. 45 (2002) 117-229.

    4. [4]

      [4] T. Iwasita, Electrocatalysis of methanol oxidation, Electrochim. Acta 47 (2002) 3663-3674.

    5. [5]

      [5] Y.X. Chen, A. Miki, S. Ye, et al., Formate, an active intermediate for direct oxidation of methanol on Pt electrode, J. Am. Chem. Soc. 125 (2003) 3680-3681.

    6. [6]

      [6] E.A. Batista, G.R.P. Malpass, A.J. Motheo, et al., New mechanistic aspects of methanol oxidation, J. Electroanal. Chem. 571 (2004) 273-282.

    7. [7]

      [7] M.C. Li, W.Y. Wang, C.N. Ma, et al., Enhanced electrocatalytic activity of Pt nanoparticles modified with PPy-HEImTfa for electrooxidation of formaldehyde, J. Electroanal. Chem. 661 (2011) 317-321.

    8. [8]

      [8] M.C. Santos, O.S. Bulhões, Electrogravimetric investigation of formaldehyde oxidation at Pt electrodes in acidic media, Electrochim. Acta 49 (2004) 1893-1901.

    9. [9]

      [9] V. Selvaraj, N. Grace, M. Alagar, Electrocatalytic oxidation of formic acid and formaldehyde on nanoparticle decorated single walled carbon nanotubes, J. Colloid Interface Sci. 333 (2009) 254-262.

    10. [10]

      [10] M.B. Brzezinska, Electrochemical oxidation of formaldehyde on gold and silver, Electrochim. Acta 30 (1985) 1193-1198.

    11. [11]

      [11] M.L. Avramov-Ivić, N.A. Anastasijević, R.R. Adžić, A study of oxidation of formaldehyde on Au(3 3 2) by rotating disc-ring method, Electrochim. Acta 35 (1990) 725-729.

    12. [12]

      [12] Z.Y. Zhou, N. Tian, Y.J. Chen, et al., In situ rapid-scan time-resolved microscope FTIR spectroelectrochemistry: study of the dynamic processes of methanol oxidation on a nanostructured Pt electrode, J. Electroanal. Chem. 573 (2004) 111-119.

    13. [13]

      [13] B.K. Jin, L. Li, J.L. Huang, et al., IR spectroelectrochemical cyclic voltabsorptometry and derivative cyclic voltabsorptometry, Anal. Chem. 81 (2009) 4476-4481.

    14. [14]

      [14] P. Liu, B.K. Jin, F.L. Cheng, A low temperature in situ infrared reflected absorbance spectroelectrochemical (LT-IRRAS) cell, J. Electroanal. Chem. 603 (2007) 269-274.

    15. [15]

      [15] B.K. Jin, P. Liu, Y. Wang, et al., Rapid-scan time-resolved FT-IR spectroelectrochemistry studies on the electrochemical redox process, J. Phys. Chem. B 111 (2007) 1517-1522.

    16. [16]

      [16] M. Avramov-Ivić, R.R. Adžić, A. Bewick, et al., An investigation of the oxidation of formaldehyde on noble metal electrodes in alkaline solutions by electrochemically modulated infrared spectroscopy (EMIRS), J. Electroanal. Chem. 240 (1988) 161-169.

    17. [17]

      [17] R. Ortiz, O.P. Marquez, J. Marquez, et al., Necessity of oxygenated surface species for the electrooxidation of methanol on iridium, J. Phys. Chem. 100 (1996) 8389-8396.

    18. [18]

      [18] S. Haq, J.G. Love, H.E. Sanders, et al., Adsorption and decomposition of formic acid on Ni{1 1 0}, Surf. Sci. 325 (1995) 230-242.

    19. [19]

      [19] O. Manoušek, J. Volke, Anodic oxidation of aromatic aldehydes at mercury electrodes, J. Electroanal. Chem. 43 (1973) 365-375.

    20. [20]

      [20] D. Barnes, P. Zuman, Polarographic reduction of aldehydes and ketones: XV. Hydration and acid-base equilibria accompanying reduction of aliphatic aldehydes, J. Electroanal. Chem. 46 (1973) 323-342.

    21. [21]

      [21] C. Zhang, D. Donadio, G. Galli, First-principle analysis of the IR stretching band of liquid water, J. Phys. Chem. Lett. 9 (2010) 1398-1402.

    22. [22]

      [22] Y. Maréchal, The molecular structure of liquid water delivered by absorption spectroscopy in the whole IR region completed with thermodynamics data, J. Mol. Struct. 1004 (2011) 146-155.

  • 加载中
    1. [1]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    2. [2]

      Xubin QianLei XuXu GeZhun LiuCheng FangJianbing WangJunfeng Niu . Can perfluorooctanoic acid be effectively degraded using β-PbO2 reactive electrochemical membrane?. Chinese Chemical Letters, 2024, 35(7): 109218-. doi: 10.1016/j.cclet.2023.109218

    3. [3]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    4. [4]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    5. [5]

      Changzhu HuangWei DaiShimao DengYixin TianXiaolin LiuJia LinHong Chen . A self-cleaning window for high-efficiency photodegradation of indoor formaldehyde. Chinese Chemical Letters, 2024, 35(9): 109429-. doi: 10.1016/j.cclet.2023.109429

    6. [6]

      Tao BanXi-Yang YuHai-Kuo TianZheng-Qing HuangChun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549

    7. [7]

      Jiqing LiuQi DangLiting WangDejin WangLiang Tang . Applications of flexible electrochemical electrodes in wastewater treatment: A review. Chinese Chemical Letters, 2024, 35(8): 109277-. doi: 10.1016/j.cclet.2023.109277

    8. [8]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    9. [9]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    10. [10]

      Gu GongMengzhu LiNing SunTing ZhiYuhao HeJunan PanYuntao CaiLonglu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705

    11. [11]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    12. [12]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    13. [13]

      Kailong ZhangChao ZhangLuanhui WuQidong YangJiadong ZhangGuang HuLiang SongGaoran LiWenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618

    14. [14]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    15. [15]

      Fengyu ZhangYali LiangZhangran YeLei DengYunna GuoPing QiuPeng JiaQiaobao ZhangLiqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655

    16. [16]

      Jian PengYue JiangShuangyu WuYanran ChengJingyu LiangYixin WangZhuo LiSijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903

    17. [17]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    18. [18]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207

    19. [19]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    20. [20]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

Metrics
  • PDF Downloads(483)
  • Abstract views(3002)
  • HTML views(114)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return