Citation: Zhou Xian, Hou Mingbo, Wang Zhen, Men Nan, Zhang Shujiang, Wang Jingyun. Advances in Application of Transition Metal-Based Catalysts for Cellulose Degradation[J]. Chemistry, ;2018, 81(5): 425-432. shu

Advances in Application of Transition Metal-Based Catalysts for Cellulose Degradation

  • Corresponding author: Wang Jingyun, jingyun.wang@lnpu.edu.cn
  • Received Date: 7 September 2017
    Accepted Date: 12 March 2018

Figures(6)

  • Efficient conversion of cellulose catalyzed by cheap transition metal instead of strong acid and noble metal catalysts is the development direction of green chemical industry, which has been the focus of many researchers. In this paper, the applications of transition metal-based catalysts in cellulose conversion are reviewed from cellulose pyrolysis (including liquefation and gasification), cellulose hydrolysis, hydrogenolysis and cellulose degradation into 5-hydroxymethyl furfural (5-HMF) respectively, and the type of catalysts, reaction conditions and reaction mechanism are summarized. Finally, the problems in the transition metal catalysis process are pointed out, and the research direction is prospected.
  • 加载中
    1. [1]

       

    2. [2]

       

    3. [3]

      E M Rubin. Nature, 2008, 454(7206):841~845. 

    4. [4]

      Q Wu, R Jin, C Kang et al. Chem. Res. Chin. Univ., 2016, 32(1):55~61. 

    5. [5]

      F S Han. Chem. Soc. Rev., 2013, 42(12):5270~5298. 

    6. [6]

       

    7. [7]

       

    8. [8]

      J F Li, B Xiao, L J Du et al. J. Fuel Chem. Technol., 2008, 36(11):42~47. 

    9. [9]

       

    10. [10]

      A B Ross, P Biller, M L Kubacki et al. Fuel, 2010, 89:2234~2243. 

    11. [11]

      U Jena, K C Das, J R Kastner. Appl. Energ., 2012, 98:368~375. 

    12. [12]

      G Yu, Y H Zhang, B Guo et al. Bioenerg. Res., 2014, 7:1317~1328. 

    13. [13]

      W Yang, X Li, S Liu et al. Energ. Convers. Manage., 2014, 87:938~945. 

    14. [14]

       

    15. [15]

      P G Duan, P E Savage. Ind. Eng. Chem. Res., 2011, 50:52~61. 

    16. [16]

      S Mohammad, G Abooali, H Morteza et al. Appl. Energ., 2016, 183:566~576. 

    17. [17]

      Y F Xu, X J Zheng, H Q Yu et al. Bioresour. Technol., 2014, 156:1~5. 

    18. [18]

       

    19. [19]

       

    20. [20]

      R Younas, S Hao, L Zhang et al. Renew. Energ., 2017, 113:532~545. 

    21. [21]

      Q Liu, X N Ye, Z B Zhang et al. Bioresour. Technol., 2014, 171:10~15. 

    22. [22]

       

    23. [23]

      Y Halpern, R Riffer, A Broid. J. Org. Chem., 1973, 38(2):204~209. 

    24. [24]

      Z B Zhang, Q Lu, X N Ye et al. Bioresources, 2015, 10(4):8295~8311.

    25. [25]

      C Zhou, X D Zhu, F Qian et al. Bioresour. Technol., 2016, 154:1~6. 

    26. [26]

      L N María, A V María, L M Elizabeth. Cellulose, 2015, 22:215~228. 

    27. [27]

    28. [28]

      H Kobayashi, T Komanoya, S K Guha et al. Appl. Catal. A, 2011, 409~410:13~20. 

    29. [29]

      D Sutton, B Kelleher, J R H Ross. Fuel Proc. Technol., 2001, 73(3):155~173. 

    30. [30]

       

    31. [31]

       

    32. [32]

      A Corujo, L Yermán, B Arizaga et al. Biomass Bioenerg., 2010, 34:1695~1702. 

    33. [33]

      J F Li, J J Liu, S Y Liao et al. Int. J. Hydrogen Energy, 2010, 35:7399~7404. 

    34. [34]

      X B Xiao, X L Meng, D D Le et al. Bioresour. Technol., 2011, 102:1975~1981. 

    35. [35]

      D Wang, W Q Yuan, W Ji. Appl. Energ., 2011, 88:1656~1663. 

    36. [36]

       

    37. [37]

      Q Y Li, S F Ji, J Y Hu et al. Chin. J. Catal., 2013, 34:1462~1468. 

    38. [38]

       

    39. [39]

      L Wang, D L Li, M Koike et al. Appl. Catal. A, 2011, 392(1/2):248~255. 

    40. [40]

      H Li, B Helene, O Esther et al. Top. Catal., 2009, 52:206~217. 

    41. [41]

      L Wang, D L Li, M Koike et al. Fuel, 2013, 112:654~661. 

    42. [42]

      D L Li, Y Nakagawa, K Tomishige. Chin. J. Catal., 2012, 33(4):583~594. 

    43. [43]

      T Kimura, T Miyazawa, J Nishikawa et al. Appl. Catal. B, 2006, 68:160~170. 

    44. [44]

      J L Song, H L Fan, J Ma et al. Green Chem., 2013, 15:2619~2635. 

    45. [45]

      C H Zhou, X Xia, C X Lin et al. Chem. Soc. Rev., 2011, 40:5588~5617. 

    46. [46]

      T P Nevell, W R Upton. Carbohydr. Res., 1976, 49:163~174. 

    47. [47]

      J Tian, J H Wang, S Zhao et al. Cellulose, 2010, 17:587~594. 

    48. [48]

      X T Li, Y J Jiang, L L Wang et al. RSC Adv., 2012, 2:6921~6925. 

    49. [49]

      K Shimizu, H Furukawa, N Kobayashi et al. Green Chem., 2009, 11:1627~1632. 

    50. [50]

      Y Ogasawara, S Itagaki, K Yamaguchi et al. ChemSusChem, 2011, 4(4):519~525. 

    51. [51]

      C Tagusagawa, A Takagaki, A Iguchi et al. Angew. Chem., 2010, 122(6):1146~1150. 

    52. [52]

      A Takagaki, C Tagusagawa, K Domen. Chem. Commun., 2008, 42:5363~5365. 

    53. [53]

       

    54. [54]

      F Yang, Y Li, Q Zhang et al. Carbohydr. Polym., 2015, 131(20):9~14. 

    55. [55]

      Z Hricovíniová. Tetrahedron-Asymm., 2011, 22:1184~1188. 

    56. [56]

      Z Hricovíniová. Carbohydr. Res., 2006, 341:2131~2134. 

    57. [57]

      Z Hricovíniová. Tetrahedron-Asymm., 2008, 19:204~208. 

    58. [58]

      Z Hricovíniová. Tetrahedron-Asymm., 2009, 20:1239~1242 

    59. [59]

      Y G Yuan, J Y Wang, N H Fu et al. Catal. Commun. 2016, 76:46~49.

    60. [60]

      J Y Wang, M D Zhou, Y G Yuan, et al. Bioresour. Technol., 2015, 197:42~47. 

    61. [61]

       

    62. [62]

      A Fukuoka, P L Dhepe. Angew. Chem. Int. Ed., 2006, 45, 5161~5163 

    63. [63]

      R Palkovits, K Tajvidi, J Procelewska et al. Green Chem., 2010, 12:972~978. 

    64. [64]

      J Geboers, S van de Vyver, K Carpentier et al. Chem. Commun., 2011, 47:5590~5592. 

    65. [65]

      G F Liang, C F Wu, L M He et al. Green. Chem., 2011, 13(4):839~842. 

    66. [66]

      J Geboers, S van de Vyver, K Carpentier et al. Chem. Commun., 2010, 46:3577~3579. 

    67. [67]

      Y Ogasawara, S Itagaki, K Yamaguchi et al. ChemSusChem, 2011,4:519~525. 

    68. [68]

      Z J Tai, J Y Zhang, A Q Wang et al. Chem. Commun., 2012, 48(56):7052~7054. 

    69. [69]

      A Shrotri, A Tanksale, J N Beltramini et al. Catal. Sci. Technol., 2012, 2(9):1852~1858. 

    70. [70]

    71. [71]

    72. [72]

      H Zhao, J E Holladay, H Brown et al. Science, 2007, 316(5831):1597~1600. 

    73. [73]

      L L Zhou, Y M He, Z W Ma. Carbohydr. Polym., 2015, 117:694~700. 

    74. [74]

      L X Zhang, H B Yu, P Wang. Bioresour. Technol., 2014, 151:355~360. 

    75. [75]

      H Li, Q Y Zhang, X F Liu et al. RSC Adv., 2013, 3:3648~3654. 

    76. [76]

      B Liu, Z H Zhang, Z B K Zhao. Chem. Eng. J., 2013, 215~216:517~521. 

    77. [77]

      A Y Hussein, H El Barbary, S Philip. J. Fuel Chem. Technol., 2013, 41(2):214~222. 

    78. [78]

      Q Zhang, P Q Yu, L Li et al. J. Fuel Chem. Technol., 2017, 45(3):317~322.

    79. [79]

      C J Carrasco, F Montilla, E Alvarez et al. Polyhedron, 2013, 54:123~130. 

    80. [80]

      L L Zhou, R J Liang, Z W Ma. Bioresour. Technol., 2013, 129:450~455. 

    81. [81]

       

    82. [82]

      C V McNeff, D T Nowlan, L C McNeff et al. App1. Cata1. A, 2010, 384:65~69. 

    83. [83]

      F Yang, G Li, P Gao et al. Energ. Technol., 2013, 1:581~586. 

  • 加载中
    1. [1]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    2. [2]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    3. [3]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    4. [4]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    5. [5]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    6. [6]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    7. [7]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    8. [8]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    9. [9]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    10. [10]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    11. [11]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    12. [12]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    13. [13]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    14. [14]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    15. [15]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    16. [16]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    17. [17]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    18. [18]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    19. [19]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    20. [20]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

Metrics
  • PDF Downloads(8)
  • Abstract views(2462)
  • HTML views(1307)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return