Citation: Yang Rong, Wang Liqing, Lv Mengni, Deng Kunfa, Fu Xin. Progress in Synthesis of Graphene and Graphene-based Materials by Microwave Method[J]. Chemistry, ;2016, 79(6): 503-508. shu

Progress in Synthesis of Graphene and Graphene-based Materials by Microwave Method

  • Received Date: 29 December 2015
    Available Online: 25 January 2016

    Fund Project:

  • Due to the unique two-dimensional structure of single atomic layer and excellent performance, graphene (Gr) attracted numerous attentions of many scientists. It will broaden prospective applications in many fields, such as materials, electronics, chemistry, energy, and bio-medicine and so on. For the future developments and applications of Gr, it is crucial to know how to obtain Gr with high quality and high yield. Microwave reduction, a green, efficient and handy method, is an important approach for producing Gr. The progress in preparation of Gr, doped Gr and Gr nanocomposites by microwave method and the applications of Gr nanocomposites as anode materials for the lithium-ion batteries were reviewed, and the prospect of them were presented, too.
  • 加载中
    1. [1]

      [1] A H C Neto, F Guinea, N M R Peres et al. Rev. Mod. Phys., 2009, 81(1):109~162.

    2. [2]

      [2] K V Bets, B I Yakobson. Nano Res., 2009, 2(2):161~166.

    3. [3]

      [3] A A Balandin, S Ghosh, W Bao et al. Nano Lett., 2008, 8(3):902~907.

    4. [4]

      [4] K S Novoselov, A K Geim, S V Morozov et al. Science, 2004, 306(5696):666~669.

    5. [5]

      [5] C Lee, X Wei, J W Kysar et al. Science, 2008, 321(5887):385~388.

    6. [6]

      [6] F Schwierz. Nat. Nanotechnol., 20105(7):487~496.

    7. [7]

      [7] P Blake, P D Brimicombe, R R Nair et al. Nano Lett., 2008, 8(6):1704~1708.

    8. [8]

      [8] F Schedin, A K Geim, S V Morozov et al. Nat. Mater., 2007, 6(9):652~655.

    9. [9]

      [9] D W Kimmel, G LeBlanc, M E Meschievitz et al. Anal. Chem., 2011, 84(2):685~707.

    10. [10]

      [10] B Luo, S Liu, L Zhi. Small, 2012, 8(5):630~646.

    11. [11]

      [11] H W Kroto, J R Heath, S C O Brien et al. Nature, 1985, 318(6042):162~163.

    12. [12]

      [12] M Eizenberg, J M Blakely. Surf. Sci., 1979, 82(1):228~236.

    13. [13]

      [13] C Berger, Z Song, T Li et al. J. Phys. Chem. B, 2004, 108(52):19912~19916.

    14. [14]

      [14] C Berger, Z Song, X Li et al. Science, 2006, 312(5777):1191~1196.

    15. [15]

      [15] S Stankovich, R D Piner, X Chen et al. J. Mater. Chem., 2006, 16(2):155~158.

    16. [16]

      [16] R Gedye, F Smith, K Westaway et al. Tetrahed. Lett., 1986, 27(3):279~282.

    17. [17]

      [17] H Hu, Z B Zhao, Q Zhou et al. Carbon, 2012, 50(9):3267~3273.

    18. [18]

      [18] J A Menendez, A Arenillas, B Fidalgo et al. Fuel Proc. Technol., 2010, 91(1):1~8.

    19. [19]

      [19] B G Liu, J H Peng, D F Huang et al. Nucl. Eng. Des., 2010, 240(10):2710~2713.

    20. [20]

      [20] C Navarro, J C Meyer, R S Sundaram et al. Nano Lett., 2010, 10(4):1144~1148.

    21. [21]

      [21] Y Hernandez, M Lotya, D Rickard et al. Langmuir, 2010, 26(5):3208~3213.

    22. [22]

      [22] 王灿, 王艳莉, 詹亮等. 无机材料学报, 2012, (7):769~774.

    23. [23]

      [23] W F Chen, L F Yan, R Prakriti et al. Carbon, 2010, 48(4):1146~1152.

    24. [24]

      [24] J H Dong, B Q Zeng, Y C Lan et al. J. Nanosci. Nano. Technol., 2010, 10(8):5051~5055.

    25. [25]

      [25] I Janowska, C Kambiz, E Ovidiu et al. Nano Res., 2010, 3(2):126~137.

    26. [26]

      [26] Y B Zhang, J P Small, W V Pontius et al. Appl. Phys. Lett., 2005, 86(7):3~5.

    27. [27]

      [27] V Sridhar, J H Jeon, I K Oh. Carbon, 2010, 48(10), 2953~2957.

    28. [28]

      [28] L P Xue, M B Zheng, C F Shen et al. Chin. J. Inorg. Chem., 2010, 26(8):1375~1381.

    29. [29]

      [29] 杨保成, 郭艳珍, 张守仁等. 郑州大学学报(理学版), 2014, 46(04):63~67.

    30. [30]

      [30] X Leng, X Xiong, P Jian et al. Nonfer. Met. Soc. Chin., 2014, 24(1):177~183.

    31. [31]

      [31] N Kim, G Q Xin, S M Cho et al. Curr. Appl. Phys., 2015, 15(09):953~957.

    32. [32]

      [32] Y W Zhu, S M Li, M D Stoller et al. Carbon, 2010, 48(7):2118~2122.

    33. [33]

      [33] 薛伟江, 于娟, 丁滔等. 材料工程, 2014, (7):39~43.

    34. [34]

      [34] 朱勇利, 曾葆青, 蔡文博等. 电子元件与材料, 2013, 32(4):9~11+15.

    35. [35]

      [35] F S A Hazmi, H G A Harbi, W G Beall et al. Synth. Met., 2015, 200:54~57.

    36. [36]

      [36] L Zhang, B C Ji, K Wang et al. Mat. Sci. Eng. B, 2014, 185(6):129~133.

    37. [37]

      [37] 王凯, 季炳成, 韩美佳等. 无机化学学报, 2013, 29(10):2105~2109.

    38. [38]

      [38] Z W Wang, B Li, Y C Xin et al. Chin. J. Catal., 2014, 35(4):509~513.

    39. [39]

      [39] 王灿, 王艳莉, 詹亮等. 无机材料学报, 2012,(2):146~150.

    40. [40]

      [40] F N I Sari, J M Ting. Appl. Surf. Sci., 2015, 355:419~428.

    41. [41]

      [41] Y X Liu, Y L Ma, Y Jin et al. J. Electroanal. Chem., 2015, 739:172~177.

    42. [42]

      [42] Y Tian, Y LMa, H P Liu et al. J. Electroanal. Chem., 2015, 742:8~14.

    43. [43]

      [43] 邓凌峰, 余开明, 严忠等. 功能材料, 2014,(21):21126~21130,21135.

    44. [44]

      [44] 黄磊, 张艳华, 涂铭旌. 功能材料, 2014, (8):8013~8019.

    45. [45]

      [45] X J Liu, T Q Chen, H P Chu et al. Electrochim. Acta, 2015, 166:12~16.

    46. [46]

      [46] C H Wu, N W Pu, P J Wu et al. Microelectron. Eng., 2015, 138:47~51.

    47. [47]

      [47] Q M Su, W W Yuan, L B Yao et al. Mater. Res. Bull., 2015, 72, 43~49.

    48. [48]

      [48] X Y Zhou, J Zhang, Q M Su et al. Electrochim. Acta, 2014, 125:615~621.

    49. [49]

      [49] D H Youn, C S Jo, J Y Kim et al. J. Power Sources, 2015, 295:228~234.

    50. [50]

      [50] V Sridhar, I Lee, H H Chun et al. Carbon, 2015, 87:186~190.

  • 加载中
    1. [1]

      Hailang JIAYujie LUPengcheng JI . Preparation and properties of nitrogen and phosphorus co-doped graphene carbon aerogel supported ruthenium electrocatalyst for hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2327-2336. doi: 10.11862/CJIC.20250021

    2. [2]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    3. [3]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Yuanchun Pan Xinyun Lin Leyi Yang Wenya Hu Dekui Song Nan Liu . Artificial Intelligence Science Practice: Preparation of Electronic Skin by Chemical Vapor Deposition of Graphene. University Chemistry, 2025, 40(11): 272-280. doi: 10.12461/PKU.DXHX202412052

    6. [6]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    7. [7]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    8. [8]

      Guanghui Wang Chen Qian Zhiyong Ma . Preparation and Characterization of 7H-Benzo[C]Carbazole Based Ultra-Long Organic Room Temperature Phosphorescence Material. University Chemistry, 2025, 40(11): 289-299. doi: 10.12461/PKU.DXHX202412062

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Ao XIABotao YUJun CHENGuoqiang TAN . Preparation and electrochemical property of Ce-doped MnO2. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2514-2526. doi: 10.11862/CJIC.20250163

    11. [11]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    12. [12]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444

    13. [13]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    14. [14]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    15. [15]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    16. [16]

      Fan FanHao XiuYuting WangYongpeng CuiYajun Wang . Construction of NH2-MIL-125/Na-doped g-C3N4 composite S-scheme heterojunction and its performance in photocatalytic hydrogen peroxide production. Acta Physico-Chimica Sinica, 2026, 42(2): 100143-0. doi: 10.1016/j.actphy.2025.100143

    17. [17]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    18. [18]

      Qilin YUYifei XUPengjun ZHANGShuwei HAOChongqiang ZHUChunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418

    19. [19]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-0. doi: 10.3866/PKU.WHXB202404023

    20. [20]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

Metrics
  • PDF Downloads(0)
  • Abstract views(1134)
  • HTML views(54)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return