Citation: Guo Xiaolong, Wang Luyao, Li Lu, Zhang Bingsen. Application of Immobilized Ionic Liquids in Organic Syntheses[J]. Chemistry, ;2016, 79(1): 16-22. shu

Application of Immobilized Ionic Liquids in Organic Syntheses

  • Corresponding author: Wang Luyao, 
  • Received Date: 25 February 2015
    Available Online: 9 August 2015

    Fund Project:

  • The immobilized ionic liquid is the combination of the ionic liquid and support material, in which two distinct parts are connected by two different interaction forces, one is the physisorption of ionic liquids to the supporting surface, such as Vander Waals, hydrogen bonding etc, and the other is chemisorption of the ionic liquids to the surface, such as covalent bonding. The immobilized ionic liquid remains the main advantages of ionic liquid, and has higher catalytic activity and better reusability. This novel catalyst can be used in many organic reactions, such as condensation reaction, coupled reaction and asymmetric synthesis. This article describes the variety of immobilized materials, interaction forces between support material and ionic liquid, and the applications of immobilized ionic liquids in organic synthesis as catalyst.
  • 加载中
    1. [1]

      [1] T Welton. Chem. Rev., 1999, 99:2071~2083.

    2. [2]

      [2] 于佳音, 于洪峰. 科技资讯, 2010, 25:8.

    3. [3]

      [3] A C Cole, J L Jensen, I Ntai et al. J. Am. Chem. Soc., 2002, 124, 5962~5963.

    4. [4]

      [4] N Yan, Y Yuan, R Dykema et al. Angew. Chem. Int. Ed., 2010, 49(32):5549~5553.

    5. [5]

      [5] W Wardencki, J Curyło, J Namies'nik. J. Biochem. Bioph. Methods, 2007, 70(2):275~288.

    6. [6]

      [6] P Matejtschuk, K Malik, C Duru et al. Am. Pharm. Rev., 2009, 12:12~18.

    7. [7]

      [7] X Duan, M Zhang, A S Mujumdar et al. Drying Technol., 2010, 28:444~453.

    8. [8]

      [8] J J Schwegman. Innov. Pharm. Technol., 2009, 29:72~74, 76~77.

    9. [9]

      [9] L A Gatlin, T Auffret, E Y Shalaev et al. Drugs Pharm. Sci., 2008, 175:177~195.

    10. [10]

      [10] S Werner, N Szesni, M Kaiser et al. Chem. Eng. Technol., 2012, 35(11):1962~1967.

    11. [11]

      [11] K B Sidhpuri, A L Daniel-da-Silva, T Trindade et al. Green Chem., 2011, 13(2):340~349.

    12. [12]

      [12] 彭长宏, 余芳, 程晓苏. 环境科学与技术, 2011, 34(9):114~118.

    13. [13]

      [13] C DeCastro, E Sauvage, M H Valkenberg et al. J. Catal., 2000, 196(1):86~94.

    14. [14]

      [14] S Rostamnia, H C Xin. J. Mol. Liq., 2014, 195:30~34.

    15. [15]

      [15] V Polshettiwar, R Luque, A Fihri et al. Chem. Rev., 2011, 111(5):3036~3075.

    16. [16]

      [16] S Shylesh, V Schuenemann, W R Thiel. Angew. Chem. Int. Ed. 2010, 49(20):3428~3459.

    17. [17]

      [17] J Deng, L P Mo, F Y Zhao et al.Green Chem., 2011, 13(9):2576~2584.

    18. [18]

      [18] P H Li, B L Li, Z M An et al. Adv. Synth. Catal., 2013, 355(14~15):2952~2959.

    19. [19]

      [19] F P Ma, P H Li, B L Li et al. Appl. Catal. A:Gen., 2013, 457:34~41.

    20. [20]

      [20] Y Li, J S Wu,D W Qi et al. Chem. Commun., 2008, 5:564~566.

    21. [21]

      [21] M Zhang, Y P Wu, X Z Feng et al. J. Mater. Chem., 2010, 20(28):5835~5842.

    22. [22]

      [22] J L Lyon, D A Fleming, M B Stone et al. Nano Lett., 2004, 4(4):719~723.

    23. [23]

      [23] Q Zhang, H Su, J Luo. Green Chem., 2012, 14:201~208.

    24. [24]

      [24] S M Sadeghzadeh, F Daneshfar. J. Mol. Liq., 2014, 199:440~444.

    25. [25]

      [25] J B Tang, H D Tang, W L Sun et al. J. Polym. Sci. Part A:Polym. Chem., 2005, 43:5477~5489.

    26. [26]

      [26] J Y Yuan, M Antonietti. Polymer, 2011, 52(7):1469~1482.

    27. [27]

      [27] V Sans, N Karbass, M I Burguete et al. Chem.Eur. J. 2011, 17, 1894~1906.

    28. [28]

      [28] S S Shinde, S N Patil. Org. Biomol. Chem., 2014, 12(45):9264~9271.

    29. [29]

      [29] M Chtchigrovsky, A Primo, P Gonzalez et al. Angew. Chem. Int. Ed., 2009, 48:5916~5920.

    30. [30]

      [30] A Ricci, L Bernardi, C Gioia et al. Chem. Commun., 2010, 46:6288~6290.

    31. [31]

      [31] J Sun, J Q Wang, W G Cheng et al. Green Chem., 2012, 14(3):654~660.

    32. [32]

      [32] M Ruta, I Yuranov, P J Dyson. J. Catal., 2007, 247(2):269~276.

    33. [33]

      [33] L J Lozanoa, C Godínez, A P de los Ríos et al. J. Membr. Sci., 2011, 376(1~2):1~14.

    34. [34]

      [34] S K Movahed, R Esmatpoursalmani, A Bazgir. RSC Adv., 2014, 49(28):14586~14591.

    35. [35]

      [35] N M Jiao, Y Wang et al. RSC Adv. 2015,5(34):26913~26922.

    36. [36]

      [36] J Isaad. RSC Adv., 2014, 4(90):49333~49341.

    37. [37]

      [37] S Rostamizadeh, M Nojavan, R Aryan et al. Catal. Lett., 2014, 144(10):1772~1783.

    38. [38]

      [38] A Khalafi-Nezhad, S Mohammadi. ACS Comb. Sci., 2013, 15(9):512~518.

    39. [39]

      [39] S Rostamnia, A Hassankhani, H G Hossieni et al. J. Mol. Catal. A:Chem., 2014, 395, 463~469.

    40. [40]

      [40] A Pourjavadi, S H Hosseini, M Doulabi et al. ACS Catal., 2012, 2(6):1259~1266.

    41. [41]

      [41] P H Li, L Wang, Y C Zhang et al. Tetrahedron, 2008, 64(32):7633~7638.

    42. [42]

      [42] X Zhang, W S Zhao, C K Qu et al. Tetrahed.:Asym., 2012, 23(6~7):468~473.

  • 加载中
    1. [1]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    2. [2]

      Ruoyu Cao Jiaxin Chen Jiaen Hu Youting Zhai Jiacong Fu Lifen Hou Xuebin Yan Yanyang Li Kai Li Shuangquan Zang . Interactive Digital Experiment for Organic Synthesis: Designing Process and Case Presentation. University Chemistry, 2026, 41(1): 406-412. doi: 10.12461/PKU.DXHX202504022

    3. [3]

      Wenjuan SHIYuke LUXiuyuan LILei HOUYaoyu WANG . Mg(Ⅱ) metal-organic frameworks based on biphenyltetracarboxylic acid: Synthesis and CO2 adsorption and catalytic conversion performance. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2455-2463. doi: 10.11862/CJIC.20250220

    4. [4]

      Fengxiao Wang Zhiwei Miao Yaofeng Yuan . 有机磷化学与化学教学. University Chemistry, 2025, 40(8): 158-168. doi: 10.12461/PKU.DXHX202410077

    5. [5]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    6. [6]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    7. [7]

      Yinuo Wang Ziyu Liu Hongxia Tan Jun Tong Dazhen Xu . Synthesis of Bromobenzoxazine: Introduce a Comprehensive Organic Chemistry Experiment Transformed from Undergraduate Research Innovation. University Chemistry, 2025, 40(10): 208-216. doi: 10.12461/PKU.DXHX202411077

    8. [8]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    9. [9]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    10. [10]

      Qingtao CHENXiangdong SHIXianghai RAOLiying JIANGChunxiao JIAFenghua CHEN . Catalytic and in situ surface-enhanced Raman scattering detection properties of graphene oxide/gold nanorod assembly. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 120-128. doi: 10.11862/CJIC.20250091

    11. [11]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    12. [12]

      Yongxin LIUXingchen LIHongjia LIUDanni LITao ZHANGXi CHEN . Enhancement effect of Fe3O4 conversion to MIL-100(Fe) on activation of persulfate for degradation of antibiotic. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2503-2513. doi: 10.11862/CJIC.20250169

    13. [13]

      Yifei Li Xuexin Chen Sihan Liu Shiyi Chen Ling Pan . Design and Application of Chemical Analysis Platform Based on Intelligent Integration of Big Data and Deep Learning Algorithm in Undergraduate Experimental Teaching. University Chemistry, 2026, 41(1): 169-178. doi: 10.12461/PKU.DXHX202504098

    14. [14]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    15. [15]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    16. [16]

      Qiaorong RU . Synthesis and characterization of tripyridine functionalized polyionic liquid luminescent materials. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 111-119. doi: 10.11862/CJIC.20250121

    17. [17]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    18. [18]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    19. [19]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    20. [20]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

Metrics
  • PDF Downloads(1)
  • Abstract views(573)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return