Citation: HAO Qing-lan, LI Bo-lun, LIU Lei, ZHANG Zheng-biao, DOU Bao-juan, WANG Chang. Effect of potassium on pyrolysis of rice husk and its components[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(1): 34-41. shu

Effect of potassium on pyrolysis of rice husk and its components

  • Corresponding author: WANG Chang, 
  • Received Date: 15 September 2014
    Available Online: 3 December 2014

    Fund Project: Supported by the National Natural Science Foundation of China (21176191). (21176191)

  • Different rice husk samples and their components (cellulose, hemicellulose and lignin) were investigated with emphasis on the influence of potassium on their pyrolysis behaviors by using thermogravimetric (TG) analysis. The results indicate that the maximum weight loss rate of cellulose decreases with the addition of KCl. However, no significant differences are observed for the pyrolysis behavior of hemicellulose and lignin. The TG/DTG curve of a model rice husk (a mixture of cellulose, hemicellulose and lignin) could be obtained by superposition of that for each component. However, during pyrolysis the raw stable structure of basic components in the rice husk results in a change from a sharp peak for the model rice husk to a shoulder peak for the AW rice husk (pretreated with HCl to remove K and the other mineral matters) at around 300 ℃. In addition, the effect of KCl addition on pyrolysis of the AW rice husks was also studied. The results show that potassium has a remarkable catalytic effect on pyrolysis of the rice husk samples. The pyrolysis characteristics vary depending on the addition methods of KCl. While char yields decrease with the addition of KCl using mechanical method (except for the cellulose), the char yield and the maximum weight loss rate of impregnated AW rice husk increase gradually with the increase of KCl content.
  • 加载中
    1. [1]

      [1] SHUTTLEWORTH P, BUDARIN V, GRONNOW M, CLARK J H, LUQUE R. Low temperature microwave-assisted vs conventional pyrolysis of various biomass feedstocks[J]. J Nat Gas Chem, 2012, 21(3): 270-274.

    2. [2]

      [2] SHOJA M, BABATABAR M A, TAVASOLI A, ATAEI A. Production of hydrogen and syngas via pyrolysis of bagasse in a dual bed reactor[J]. J Energy Chem, 2013, 22(4): 639-644.

    3. [3]

      [3] SZABO P, VARHEGYI G, TILL F, FAIX O. Thermogravimetric/mass spectrometric characterization of two energy crops, Arundo donax and Miscanthus sinensis[J]. J Anal Appl Pyrolysis, 1996, 36(2): 179-190.

    4. [4]

      [4] WANG S R, LIAO Y F, WEN L H, LUO Z Y, CEN K F. Catalysis mechanism of potassium salt during rapid pyrolysis of cellulose[J]. J Fuel Chem Technol, 2004, 32(6): 694-698.

    5. [5]

      [5] WU H X, LI H B, FENG Y P, WANG X B, ZHAO Z L, HE F. Effects of potassium on the pyrolysis of biomass components by TG-FTIR analysis[J]. J Fuel Chem Technol, 2013, 41(8): 950-957.

    6. [6]

      [6] NOWAKOWSKI D J, JONES J M, BRYDSON R M, ROSS A B. Potassium catalysis in the pyrolysis behaviour of short rotation willow coppice[J]. Fuel, 2007, 86(15): 2389-2402.

    7. [7]

      [7] KNUDSEN J N, JENSEN P A, DAM J K. Transformation and release to the gas phase of Cl, K, and S during combustion of annual biomass[J]. Energy Fuels, 2004, 18(5): 1385-1399.

    8. [8]

      [8] RAVEENDRAN K, GANESH A, KHILAR K C. Influence of mineral matter on biomass pyrolysis characteristics[J]. Fuel, 1995, 74(12): 1812-1822.

    9. [9]

      [9] EOM I Y, KIM K H, KIM J Y, LEE S M, YEO H M, CHOI I G, CHOI J W. Characterization of primary thermal degradation features of lignocellulosic biomass after removal of inorganic metals by diverse solvents[J]. Bioresour Technol, 2011, 102(3): 3437-3444.

    10. [10]

      [10] MAYER Z A, APFELBACHER A, HORNUNG A. A comparative study on the pyrolysis of metal-and ash-enriched wood and the combustion properties of the gained char[J]. J Anal Appl Pyrolysis, 2012, 96(7): 196-202.

    11. [11]

      [11] EOM I Y, KIM J Y, KIM T S, LEE S M, CHOI D, CHOI I G, CHOI J W. Effect of essential inorganic metals on primary thermal degradation of lignocellulosic biomass[J]. Bioresour Technol, 2012, 104(1): 687-694.

    12. [12]

      [12] WANG X H, CHEN H P, WANG J, XIN F, YANG H P. Influences of mineral matters on biomass pyrolysis characteristics[J]. J Fuel Chem Technol, 2008, 36(6): 679-683.

    13. [13]

      [13] BJOERKMAN E, STROEMBERG B. Release of chlorine from biomass at pyrolysis and gasification conditions[J]. Energy Fuels, 1997, 11(5): 1026-1032.

    14. [14]

      [14] DIEBOLD J P. A unified, global model for the pyrolysis of cellulose[J]. Biomass Bioenergy, 1994, 7(1/6): 75-85.

    15. [15]

      [15] YANG H P, YAN R, CHEN H P, LEE D H, ZHENG C G. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007, 86(12/13): 1781-1788.

    16. [16]

      [16] CHEN C A, PAKDEL H, ROY C. Production of monomeric phenols by thermochemical conversion of biomass: A review[J]. Bioresour Technol, 2001, 79(3): 277-299.

    17. [17]

      [17] NAKAMURA T, KAWAMOTO H, SAKA S. Pyrolysis behavior of Japanese cedar wood lignin studied with various model dimers[J]. J Anal Appl Pyrolysis, 2008, 81(2): 173-182.

    18. [18]

      [18] BRITT P F, BUCHANAN III A C, THOMAS K B, LEE S K. Pyrolysis mechanisms of lignin: Surface-immobilized model rice husk investigation of acid-catalyzed and free-radical reaction pathways[J]. J Anal Appl Pyrolysis, 1995, 33: 1-19.

    19. [19]

      [19] WORASUWANNARAK N, SONOBEA T, TANTHAPANICHAKOON W. Pyrolysis behaviors of rice straw, rice husk and corncob by TG-MS technique[J]. J Anal Appl Pyrolysis, 2007, 78(2): 265-271.

    20. [20]

      [20] SUN J X, SUN X F, SUN R C, SU Y Q. Fractional extraction and structural characterization of sugarcane bagasse hemicelluloses[J]. Carbohyd Polym, 2004, 56(2): 195-204.

    21. [21]

      [21] CHEN H Z, LIU L Y. Unpolluted fractionation of wheat straw by steam explosion and ethanol extraction[J]. Bioresour Technol, 2007, 98(3): 666-676.

    22. [22]

      [22] SADDAWI A, JONES J M, WILLIAMS A. Influence of alkali metals on the kinetics of the thermal decomposition of biomass[J]. Fuel Process Technol, 2012, 104(12): 189-197.

    23. [23]

      [23] WANG J, ZHANG M X, CHEN M Q, MIN F F, ZHANG S P, REN Z W, YAN Y J. Catalytic effects of six inorganic compounds on pyrolysis of three kinds of biomass[J]. Thermochim Acta, 2006, 444(1): 110-114.

  • 加载中
    1. [1]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    2. [2]

      Zihan ChengKai JiangJun JiangHenggang WangHengwei Lin . Achieving thermal-stimulus-responsive dynamic afterglow from carbon dots by singlet-triplet energy gap engineering through covalent fixation. Acta Physico-Chimica Sinica, 2026, 42(2): 100169-0. doi: 10.1016/j.actphy.2025.100169

    3. [3]

      Xiao LiuHangqi LiuQian WangDandan ZhengSibo WangMasakazu AnpoGuigang Zhang . Rational synthesis of poly(heptazine imides) nanorod in ternary LiCl/NaCl/KCl for visible light hydrogen production. Chinese Chemical Letters, 2025, 36(12): 111621-. doi: 10.1016/j.cclet.2025.111621

    4. [4]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    5. [5]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 100028-0. doi: 10.3866/PKU.WHXB202406009

    6. [6]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

    7. [7]

      Yecang Tang Shan Ling Zhen Fang . Exploration of a Hierarchical and Integration-Oriented Talent Training Model in the Demonstration Center for Experimental Chemistry Education. University Chemistry, 2024, 39(7): 188-192. doi: 10.12461/PKU.DXHX202405107

    8. [8]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    11. [11]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    12. [12]

      Zehua Zhao Xiaoyan An Jinrong Xu Ling Yang Hao Zhao Zhongyun Wu . Independent Development and Application of Calorimetric Experiment Data Acquisition and Processing Software. University Chemistry, 2025, 40(11): 402-408. doi: 10.12461/PKU.DXHX202505045

    13. [13]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    14. [14]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    15. [15]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    16. [16]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    17. [17]

      Huan Zhang Linyu Pu Wei Wang Yatang Dai Xu Huang . Curriculum Development and Blended Teaching Practice in the Graduate Course on Elemental Inorganic Chemistry. University Chemistry, 2024, 39(6): 166-173. doi: 10.3866/PKU.DXHX202402010

    18. [18]

      Zhiguang Xu Xuan Xu Qiong Luo Ganquan Wang Bin Peng . Reform and Practice of Online and Offline Blended Teaching in Structural Chemistry Course. University Chemistry, 2024, 39(6): 195-200. doi: 10.3866/PKU.DXHX202310112

    19. [19]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    20. [20]

      Chengshan Yuan Xiaolong Li Xiuping Yang Xiangfeng Shao Zitong Liu Xiaolei Wang Yongwen Shen . Standardized Operational Guidelines for Mixed-Solvent Recrystallization in Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 122-127. doi: 10.12461/PKU.DXHX202504073

Metrics
  • PDF Downloads(0)
  • Abstract views(671)
  • HTML views(96)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return