Citation: ZUO Chen-sheng, Zhou Si-yu, SUN Cheng-zhi, WANG Xing-zhi, LIU Dao-sheng, SEO Hwi-min, PARK Yong-ki, GUI Jian-zhou, LIU Dan. Preparation and application of magnesium-based CO2 sorbent for temperature swing absorption I.Na/Mg mol ratio[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(7): 884-889. shu

Preparation and application of magnesium-based CO2 sorbent for temperature swing absorption I.Na/Mg mol ratio

  • Corresponding author: GUI Jian-zhou,  LIU Dan, 
  • Received Date: 16 December 2013
    Available Online: 21 March 2014

    Fund Project: 国家自然科学基金(21103077) (21103077)教育部新世纪优秀人才支持计划(NCET-11-1011) (NCET-11-1011)韩国教育科技部KCRC2020项目(2012M1A8A1912543) (2012M1A8A1912543)天津市应用基础与前沿技术研究计划(13JCYBJC41600) (13JCYBJC41600)辽宁省自然科学基金(201202123) (201202123)辽宁省教育厅(L2012128)。 (L2012128)

  • A series of magnesium-based CO2 absorbents with different Na/Mg molar ratios were prepared by precipitation method with Mg(NO3)2 and Na2CO3 as raw materials, and characterized by various methods (including XRD, SEM-EDS and DTG) to study the compositions, morphology and decomposition temperature and so on. The CO2 absorption performance was evaluated by temperature swing absorption-desorption dynamic cyclic tests to check the impact of Na/Mg molar ratio. It can be seen that optimum molecular ratio of Na to Mg is 8.15, and the sorbents is homogeneous with lower decomposition temperature caused by small particles of the sample, and initial CO2 adsorption capacity can reach 9.584%. Good recycling capability can be obtained as well. Compared with the initial absorption capacity, there was only 4.2% decrease after 20 recycles.
  • 加载中
    1. [1]

      [1] IPCC. Intergovernmental panel on climate change. Geneva: World Meteorological Organization, 2009.

    2. [2]

      [2] SONG C S. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing[J]. Catal Today, 2006, 115(1): 2-32.

    3. [3]

      [3] Working Group III of the Intergovernmental Panel on Climate Change (IPCC). IPCC Special Report on Carbon Dioxide Capture and Storage. Cambridge: Cambridge University Press, 2007: 15-40.

    4. [4]

      [4] 占鑫星, 刘峙嵘. 二氧化碳吸附剂的研究进展[J]. 湿法冶金, 2012, 31(3): 133-137. (ZHAN Xin-xing, LIU Zhi-rong. Research progress of adsorbents for carbon dioxide[J]. Hydrometallurgy of China, 2012, 31(3): 133-137.)

    5. [5]

      [5] HOUGHTON J T, DING Y, GRIGGS D J, NOGUER M. Climate Change 2001: The science of climate change[M]. Cambridge: Cambridge University Press, 2002: 28-47.

    6. [6]

      [6] MARKEWITZ P, KUCKSHINRICHS W, LEITNER W, LINSSEN J, ZAPP P, BONGARTZ R, SCHREIBER A, MVLLER T E. Worldwide innovations in the development of carbon capture technologies and the utilization of CO2[J]. Energy Environ Sci, 2012, 5(6): 7281-7305.

    7. [7]

      [7] 韩东升, 任吉萍, 吴干学, 郭家秀, 尹华强. 碳捕获与封存技术综述[J]. 四川化工, 2012, (2): 17-21. (HAN Dong-sheng, REN Ji-ping, WU Gan-xue, GUO Jia-xiu, YIN Hua-qiang. Overview of carbon capture and storage technology[J]. Sichuan Chemical Industry, 2012, (2): 17-21.)

    8. [8]

      [8] 巢清尘, 陈文颖. 碳捕获和存储技术综述及对我国的影响[J]. 地球科学进展, 2006, 21(3): 291-298. (CHAO Qing-chen, CHEN Wen-yin. The summary of carbon capture and storage technology and its impact on China[J]. Advances in Earth Sciences, 2006, 21(3): 291-298.)

    9. [9]

      [9] METZ B, DAVIDSON O, DE CONINCK H C, LOOS M, MEYER L A. IPCC special report on carbon dioxide capture and storage: Prepared by working group III of the intergovernmental panel on climate change[M]. UK: Cambridge University Press, 2005: 378-456.

    10. [10]

      [10] 高蓝宇. CO2吸附和输送技术研究. 浙江: 浙江大学, 2011: 35-38. (GAO Lan-yu. Researeh on CO2 adsorption and transportation technology. Zhejiang: Zhejiang University, 2011: 35-38.)

    11. [11]

      [11] LEE S C, CHAE H J, LEE S J, CHOI B Y, YI C K, LEE J B, RYU C K, KIM J C. Development of regenerable MgO-based sorbent promoted with K2CO3 for CO2 capture at low temperatures[J]. Environ Sci Technol, 2008, 42(8): 2736-2741.

    12. [12]

      [12] LI L, ZHANG B S, WANG F, ZHAO N, XIAO F K, WEI W, SUN Y H. Study of the novel KMgAl sorbents for CO2 capture[J]. Energy Fuels, 2013, 27(9): 5388-5396.

    13. [13]

      [13] XIAO G K, SINGH R, CHAFFEE A, WEBLEY P. Advanced adsorbents based on MgO and K2CO3 for capture of CO2 at elevated temperatures[J]. Int J Greenh Gas Con, 2011, 5(4): 634-639.

    14. [14]

      [14] LI L, LI Y, WEN X, WANG F, ZHAO N, XIAO F K, WEI W, SUN Y H. CO2 capture over K2CO3/MgO/Al2O3 dry sorbent in a fluidized bed[J]. Energy Fuels, 2011, 25(8): 3835-3842.

    15. [15]

      [15] HU Y H. Advances in CO2 conversion and utilization[M]. Washington, DC: American Chemical Society, 2010.

    16. [16]

      [16] SEGGIANI M, PUCCINI M, VITOLO S. High-temperature and low concentration CO2 sorption on Li4SiO4 based sorbents: Study of the used silica and doping method effects[J]. Int J Greenh Gas Con, 2011, 5(4): 741-748.

    17. [17]

      [17] WANG S T, AN C H, ZHANG Q H. Syntheses and structures of lithium zirconates for high-temperature CO2 absorption[J]. J Mater Chem, 2013, 11: 3540-3550.

    18. [18]

      [18] HAN K K, ZHOU Y, CHUN Y, ZHU J H. Efficient MgO-based mesoporous CO2 trapper and its performance at high temperature[J]. J Hazard Mater, 2012, 203: 341-347.

    19. [19]

      [19] BHAGIYALAKSHMI M, LEE J Y, JANG H T. Synthesis of mesoporous magnesium oxide: Its application to CO2 chemisorption[J]. Int J Greenh Gas Con, 2010, 4(1): 51-56.

    20. [20]

      [20] RUMINSKI A M, JEON K J, URBAN J J. Size-dependent CO2 capture in chemically synthesized magnesium oxide nanocrystals[J]. J Mater Chem, 2011, 21(31): 11486-11491.

    21. [21]

      [21] LEE S C, KIM J C. Dry potassium-based sorbents for CO2 capture[J]. Catal Surv Asia, 2007, 11(4): 171-185.

    22. [22]

      [22] SIRIWARDANE R V, STEVENS JR R W. Novel regenerable magnesium hydroxide sorbents for CO2 capture at warm gas temperatures[J]. Ind Eng Chem Res, 2008, 48(4): 2135-2141.

    23. [23]

      [23] FISHER J C, SIRIWARDANE R V, STEVENS JR R W. Process for CO2 capture from high-pressure and moderate-temperature gas streams[J]. Ind Eng Chem Res, 2012, 51(14): 5273-5281.

    24. [24]

      [24] PABST A. The crystallography and structure of eitelite, Na2Mg(CO3)2[J]. Am Mineral, 1973, 58(3/4): 211-217.

  • 加载中
    1. [1]

      Jiayi Yang Jianxiu Hao Huacong Zhou Quansheng Liu . “Gorgeous Transformation” of Carbon Dioxide into Cyclic Carbonates: Catalyst Types and Roles. University Chemistry, 2026, 41(2): 178-189. doi: 10.12461/PKU.DXHX202502105

    2. [2]

      Xiaolong Li Shiqi Zhong Xiangfeng Wei Zhiqiang Liu Pan Zhan Jiehua Liu . Carbon Dioxide: From the Past to the Future. University Chemistry, 2026, 41(2): 242-247. doi: 10.12461/PKU.DXHX202503013

    3. [3]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    4. [4]

      Hailian Cheng Shuaiqiang Jia Chunjun Chen Haihong Wu Buxing Han . Electrocatalytic CO2 Conversion: A Key to Unlocking a Low-Carbon Future. University Chemistry, 2026, 41(2): 1-13. doi: 10.12461/PKU.DXHX202502023

    5. [5]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    6. [6]

      Jiayin Hu Yafei Guo Long Li Tianlong Deng . Teaching Innovation of Salt-Water System Phase Diagrams under the “Dual Carbon” Background: Introducing the Pressurized CO2 Carbonization Phase Equilibria. University Chemistry, 2025, 40(11): 31-36. doi: 10.12461/PKU.DXHX202412031

    7. [7]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    8. [8]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    9. [9]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    10. [10]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    11. [11]

      Xiaomin Kang Chuanbao Jiao . Application of Metal-Organic Frameworks in CO2 Catalytic Conversion: Promoting “Double Carbon” Actions for a Beautiful China. University Chemistry, 2026, 41(2): 208-217. doi: 10.12461/PKU.DXHX202503011

    12. [12]

      Chen Lin Huanjun Xu . ‘Thank-You Letter’ from CO2: Development of Technology Has Changed My Image. University Chemistry, 2026, 41(2): 238-241. doi: 10.12461/PKU.DXHX202502048

    13. [13]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    14. [14]

      Yucai Zhang Jun Jiang . Electrochemical Carbon Dioxide Reduction to Ethylene. University Chemistry, 2026, 41(2): 190-196. doi: 10.12461/PKU.DXHX202503006

    15. [15]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    16. [16]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    17. [17]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    18. [18]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    19. [19]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    20. [20]

      Jianan Zhang Mengzhen Xu Jiamin Liu Yufei He . 面向“双碳”目标的脱氯吸附剂开发研究型综合实验设计. University Chemistry, 2025, 40(6): 248-255. doi: 10.12461/PKU.DXHX202408068

Metrics
  • PDF Downloads(0)
  • Abstract views(589)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return