Citation:
LI Fu-chao, ZHANG Jiu-shun, YUAN Qi-min. Mechanism of methane formation in thermal and catalytic cracking of n-octane[J]. Journal of Fuel Chemistry and Technology,
;2014, 42(6): 697-703.
-
The thermal and catalytic cracking reactions of n-octane were carried out in a temperature range of 550~650 ℃ with low conversions (x<15%) in a pulse micro-reactor over quartz and ZRP zeolite. Reaction mechanism of methane formation was analyzed. The results showed that ethylene, propylene and n-butylene were primary products and four paths contributed to methane formation in thermal cracking of n-octane. At 600 ℃, dehydrogenation of terminal C-H bond in the chain attacked by methyl radical led to methane production. Due to higher activation energy of cleavage of terminal C-C bond in octyl radical formed via dehydrogenation of central C-C bond, only methane can form at higher temperature. Protolytic cracking was predominant with relatively remarkable yield of normal paraffin in catalytic cracking of n-octane over ZRP zeolite. Methane was produced by protolytic cracking route as well. By comparison of methane formation between thermal and protolytic cracking, it revealed that methane formed through protolytic cracking below 600 ℃ while thermal cracking dominated the selectivity of methane at higher reaction temperatures.
-
Keywords:
- n-octane,
- thermal cracking,
- catalytic cracking,
- methane,
- reaction path
-
-
-
[1]
[1] RICE F O. The thermal decomposition of oganic compounds from the standpoint of free radicals. I. Saturated hydrocarbons[J]. J Am Chem Soc, 1931, 53(5): 1959-1972.
-
[2]
[2] RICE F O. The thermal decomposition of organic compounds from the standpoint of free radicals. Ⅲ. The calculation of the products formed from paraffin hydrocarbons[J]. J Am Chem Soc, 1933, 55(7): 3035-3040.
-
[3]
[3] RICE F O, DOOLEY M D. The thermal decomposition of organic compounds from the standpoint of free radicals. IV. The dehydrogenation of paraffin hydrocarbons and the strength of the C-C bond[J]. J Am Chem Soc, 1933, 55(10): 4245-4247.
-
[4]
[4] KOSSIAKOFF A, RICE F O. Thermal decomposition of hydrocarbons, resonance stabilization and isomerization of free radicals[J]. J Am Chem Soc, 1943, 65(4): 590-595.
-
[5]
[5] GREENSFELDER B, VOGE H, GOOD G. Catalytic cracking of pure hydrocarbons[J]. Ind Eng Chem, 1945, 37(12): 1168-1176.
-
[6]
[6] HAAG W, DESSAU R. Duality of mechanism for acid-catalyzed paraffin cracking[C]//Proceedings of the 8th International Congress on Catalysis, Berlin, 1984.
-
[7]
[7] YALURIS G, REKOSKE J E, APARICIO L M, MADON R J, DUMESIC J A. Isobutane cracking over Y-zeolites: I. Development of a kinetic-model[J]. J Catal, 1995, 153(1): 54-64.
-
[8]
[8] YALURIS G, REKOSKE J E, APARICIO L M, MADON R J, DUMESIC J A. Isobutane cracking over Y-zeolites: Ⅱ. Catalytic cycles and reaction selectivity[J]. J Catal, 1995, 153(1): 65-75.
-
[9]
[9] 胡晓燕, 李春义, 杨朝合. 正庚烷在HZSM-5催化剂上的催化裂解行为[J]. 物理化学学报, 2010, 26(12): 3291-3298. (HU Xiao-yan, LI Chun-yi, YANG Chao-he. Catalytic cracking behavior of n-heptane over HZSM-5 catalyst[J]. Acta Physico-Chimica Sinica, 2010, 26(12): 3291-3298.)
-
[10]
[10] LUKYANOV D B, SHTRAL V I, KHADZHIEV S N. A kinetic model for the hexane cracking reaction over H-ZSM-5[J]. J Catal, 1994, 146(1): 87-92.
-
[11]
[11] JUNG J S, PARK J W, SEO G. Catalytic cracking of n-octane over alkali-treated MFI zeolites[J]. Appl Catal A: Gen, 2005, 288(1/2): 149-157.
-
[12]
[12] KISSIN Y V. Relative reactivities of alkanes in catalytic cracking reactions[J]. J Catal, 1990, 126(2): 600-609.
-
[13]
[13] WIELERS A F H, VAARKAMP M, POST M F M. Relation between properties and performance of zeolites in paraffin cracking[J]. J Catal, 1991, 127(1): 51-66.
-
[14]
[14] ALTWASSER S, WELKER C, TRAA Y, WEITKAMP J. Catalytic cracking of n-octane on small-pore zeolites[J]. Micropor Mesopor Mater, 2005, 83(1/3): 345-356.
-
[15]
[15] RICE F O. Thermal decomposition of hydrocarbons and engine detonation[J]. Ind Eng Chem, 1934, 26(3): 259-262.
-
[16]
[16] 徐如人, 庞文琴, 于吉红, 霍启升, 陈接胜. 分子筛与多孔材料化学[M]. 北京: 科学出版社, 2004: 63-65. (XU Ru-ren, PANG Wen-qin, YU Ji-hong, HUO Qi-sheng, CHEN Jie-sheng. Zeolite and porous materials[M]. Beijing: Science Press, 2004: 63-65.)
-
[17]
[17] JOLLY S, SAUSSEY J, BETTAHAR M M, LAVALLEY J C, BENAZZI E. Reaction mechanisms and kinetics in the n-hexane cracking over zeolites[J]. Appl Catal A: Gen, 1997, 156(1): 71-96.
-
[18]
[18] CORMA A, PLANELLES J, SÁNCHEZ-MARÍN J, TOMÁS F. The role of different types of acid site in the cracking of alkanes on zeolite catalysts[J]. J Catal, 1985, 93(1): 30-37.
-
[19]
[19] WOJCIECHOWSKI B W. The reaction mechanism of catalytic cracking: Quantifying activity, selectivity, and catalyst decay[J]. Catal Rev, 1998, 40(3): 209-328.
-
[20]
[20] SHERTUKDE P V, MARCELIN G, SILL G A, KEITH HALL W. Study of the mechanism of the cracking of small alkane molecules on HY Zeolites[J]. J Catal, 1992, 136(2): 446-462.
-
[1]
-
-
-
[1]
Yutong Liu , Xuemin Jing . Research Progress on the Catalytic Conversion of Methane in the Context of the “Dual Carbon” Goals. University Chemistry, 2025, 40(10): 101-113. doi: 10.12461/PKU.DXHX202412018
-
[2]
Yanzhe WANG , Xiaoming GUO , Qiangsheng GUO , Liang LI , Bin LU , Peihang YE . Effect of Ce introduction on the low-temperature performance of NiAl catalyst for CO2 methanation. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2218-2228. doi: 10.11862/CJIC.20250202
-
[3]
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049
-
[4]
Feifei Yang , Wei Zhou , Chaoran Yang , Tianyu Zhang , Yanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017
-
[5]
Xinyi Fan , Wancai Shi , Zhenyu Sun . 甲烷——温室效应中的“隐形杀手”与绿色转机. University Chemistry, 2025, 40(11): 1-10. doi: 10.12461/PKU.DXHX202412060
-
[6]
Haiqiang Lin , Weizheng Weng , Jingdong Lin , Mingshu Chen , Xueming Fang , Lefu Yang . Diverse Variables-Driven Catalytic Optimization: Experimental Enhancement and Instructional Design for Selective Methane Oxidation on Supported Nickel-based Catalysts. University Chemistry, 2025, 40(11): 327-336. doi: 10.12461/PKU.DXHX202505106
-
[7]
Xinyu Xu , Jiale Lu , Bo Su , Jiayi Chen , Xiong Chen , Sibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153
-
[8]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002
-
[9]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[10]
Yuhang Zhang , Yi Li , Yuehan Cao , Yingjie Shuai , Yu Zhou , Ying Zhou . Regulating the formation type by Ir of intermediates to suppress product overoxidation in photocatalytic methane conversion. Acta Physico-Chimica Sinica, 2026, 42(2): 100173-0. doi: 10.1016/j.actphy.2025.100173
-
[11]
Wenlong Wang , Wentao Hao , Lang He , Jia Qiao , Ning Li , Chaoqiu Chen , Yong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116
-
[12]
Yiting Huo , Xin Zhou , Feifan Zhao , Chenbin Ai , Zhen Wu , Zhidong Chang , Bicheng Zhu . Boosting photocatalytic CO2 methanation through TiO2/CdS S-scheme heterojunction and fs-TAS mechanism study. Acta Physico-Chimica Sinica, 2025, 41(11): 100148-0. doi: 10.1016/j.actphy.2025.100148
-
[13]
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
-
[14]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[15]
Ruming Yuan , Pingping Wu , Laiying Zhang , Xiaoming Xu , Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057
-
[16]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[17]
Yongqing Xu , Yuyao Yang , Mengna Wu , Xiaoxiao Yang , Xuan Bie , Shiyu Zhang , Qinghai Li , Yanguo Zhang , Chenwei Zhang , Robert E. Przekop , Bogna Sztorch , Dariusz Brzakalski , Hui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003
-
[18]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[19]
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012
-
[20]
Yue Zhao , Yanfei Li , Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(742)
- HTML views(80)
Login In
DownLoad: