Citation: ZHANG Tao-zhi, HUANG Li-chun, HU Tian-dou, SHI Rui-ping, WANG Guo-fu, ZHENG Li-rong, CHU Sheng-qi, ZHOU Ying-li, WU Min, AN Peng-fei. An AXAFS study on the mechanism of reactive adsorption desulfurization of model oil over Ni/ZnO adsorbent[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(2): 246-251. shu

An AXAFS study on the mechanism of reactive adsorption desulfurization of model oil over Ni/ZnO adsorbent

  • Corresponding author: HU Tian-dou, 
  • Received Date: 23 May 2013
    Available Online: 30 July 2013

    Fund Project: 国家自然科学基金(21227002) (21227002)国家重点基础研究发展规划(973计划,2010CB226900)。 (973计划,2010CB226900)

  • Atomic XAFS (AXAFS) originates from photoelectron scattering off electrons in bonds on the periphery of the absorber atom, the embedded-atom potential, the interstitial potential and the distribution of the absorber-atom electron density are all found to be important in determining the AXAFS intensity, hence AXAFS can be a very useful probe to monitor changes in the electronic and chemical structure of the absorber atom. In this work, we use AXAFS of Zn element to study the reaction mechanism of the calcined and the reduced adsorbent under different atmospheres, it is showed that hydrogen plays an important role in the desulfurization. In situ AXAFS of Zn element also exhibits the chemical structure evolution of Zn element during desulfurization at 350 ℃ and 3.0 MPa in the atmosphere of H2.
  • 加载中
    1. [1]

      [1] HOLLAND B W, PENDRY J B, PETTIFER R F, BORDAS J. Atomic origin of structure in EXAFS experiment[J]. J Phys C: Solid State Phys, 1978, 11(3): 633-642.

    2. [2]

      [2] REHR J J, BOOTH C H, BRIDGES F, ZABINSKY S I. X-ray absorption fine structure in embedded atoms[J]. Phys Rev B, 1994, 49(17): 12347-12350.

    3. [3]

      [3] RAMAKER D E, MOJET B L, KONINGSBERGER D C, GRADY W E O. Understanding atomic X-ray absorption fine structure in X-ray absorption spectra[J]. J Phys Condens Matter, 1998, 10(39): 8753-8770.

    4. [4]

      [4] FILIPPONI A, DI CICCO A, PIANETTA P, KENDELEWICZ T. Evidence for [1s2p]3p shake-up channels in compounds and oxides of third-period elements[J]. Phys Rev B, 53(23): 15571-15576.

    5. [5]

      [5] MOJET B L, MILLER J T, RAMAKER D E, KONINGSBERGER D C. A new model describing the metal-support interaction in noble metal catalysts[J]. J Catal, 1999, 186(2): 373-386.

    6. [6]

      [6] KONINGSBERGER D C, DE GRAAF J, MOJET B L, RAMAKER D E, MILLER J T. The metal-support interaction in Pt/Y zeolite: Evidence for a shift in energy of metal d-valence orbitals by Pt-H shape resonance and atomic XAFS spectroscopy[J]. Appl Catal A: Gen, 2000, 191(1/2): 205-220.

    7. [7]

      [7] RAMAKER D E, VAN DORSSEN G E, MOJET B L, KONINGSBERGER D C. An atomic X-ray absorption fine structure study of the influence of hydrogen chemisorption and support on the electronic structure of supported Pt particles[J]. Top Catal, 2000, 10(3/4): 157-165.

    8. [8]

      [8] RAMAKER D E, QIAN X, GRADY W E O.‘Atomic’X-ray absoption fine structure:A new tool for examining electronic and ionic polarization effects[J]. Chem Phys Lett, 1999, 299(2): 221-226.

    9. [9]

      [9] TAWARA K, NISHIMURA T, IWANAMI H, NISHIMOTO T, HASUIKE T. New hydrodesulfurization catalyst for petroleum-fed fuel cell vehicles and cogenerations[J]. Ind Eng Chem Res, 2001, 40(10): 2367-2370.

    10. [10]

      [10] BEZVERKHYY I, RYZHIKOV A, GADACZ G, BELLAT J P. Kinetics of thiophene reactive adsorption on Ni/SiO2 and Ni/ZnO[J]. Catal Today, 2008, 130(1): 199-205.

    11. [11]

      [11] HUANG L C, WANG G F, QIN Z F, DONG M, DU M X, GE H, LI X K, ZHAO Y D, ZHANG J, HU T D, WANG J G. In situ XAS study on the mechanism of reactive adsorption desulfurization of oil product over Ni/ZnO[J]. Appl Catal B: Environ, 2011, 106(1/2): 26-38.

    12. [12]

      [12] BABICH I V, MOULIJN J A. Science and technology of novel processes for deep desulfurization of oil refinery streams: A review[J]. Fuel, 2003, 82(6): 607-631.

    13. [13]

      [13] BEZVERKHYY I, RYZHIKOV A, GADACZ G, BELLAT J P. Kinetics of thiophene reactive adsorption on Ni/SiO2 and Ni/ZnO[J]. Catal Today, 2008, 130(1): 199-205.

    14. [14]

      [14] HUANG L C, WANG G F, QIN Z F, DU M X, DONG M, GE H, WU Z W, ZHAO Y D, MA C Y, HU T D, WANG J G. A sulfur K-edge XANES study on the transfer of sulfur species in the reactive adsorption desulfurization of diesel oil over Ni/ZnO[J]. Catal Commun, 2010, 11: 592-596.

    15. [15]

      [15] HUANG L C, QIN Z F, WANG GF, DU M X, GE H, LI X K, WU Z W, WANG J G. A detailed study on the negative effect of residual sodium on the performance of Ni/ZnO adsorbent for diesel fuel desulfurization[J]. Eng Chem Res, 2010, 49: 4670-4675.

    16. [16]

      [16] LI G G, BRIDGES F, BROWN G S. Multielectron X-ray photoexcitation observations in X-ray-absorption fine-structure background[J]. Phys Rev Lett, 1992, 68(10): 1609-1612.

    17. [17]

      [17] DORSSEN VAN G E, KONINGSBERGER D C, RAMAKER D E. Separation of double-electron and atomic XAFS contributions in X-ray absorption spectra of Pt foil and Na2Pt(OH)6[J]. J Phys Condens Mat, 2002, 14(49): 13529-13541.

    18. [18]

      [18] RAMAKER D E, KONINGSBERGER D C. The atomic AXAFS and SymbolDA@SymbolmA@XANES techniques as applied to heterogeneous catalysis and electrocatalysis[J]. Phys Chem Chem Phys, 2010, 12(21): 5514-5534.

    19. [19]

      [19] NOVOCHINSKⅡ I I, SONG C, MA X, LIU X S, SHORE L, LAMPERT J, FARRAUTO R J. Low-temperature H2S removal from steam-containing gas mixtures with ZnO for fuel cell application. 2. Wash-coated monolith[J]. Energy Fuels, 2004, 18(2): 584-589.

  • 加载中
    1. [1]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    2. [2]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    3. [3]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    4. [4]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    5. [5]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    6. [6]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    7. [7]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    8. [8]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    9. [9]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    10. [10]

      Yang LiXiaoxu LiuTianyi JiMan ZhangXueru YanMengjie YaoDawei ShengShaodong LiPeipei RenZexiang Shen . Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109551-. doi: 10.1016/j.cclet.2024.109551

    11. [11]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    12. [12]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    13. [13]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    14. [14]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    15. [15]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    16. [16]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    17. [17]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    18. [18]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    19. [19]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    20. [20]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

Metrics
  • PDF Downloads(0)
  • Abstract views(332)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return