Citation:
GAO Xin-hua, WANG Yi-lan, LU Shi-peng, ZHANG Jian-li, FAN Su-bing, ZHAO Tian-sheng. Preparation of Fe-Zr catalyst by microwave-hydrothermal method and its catalytic performance for the direct synthesis of light olefins from CO hydrogenation[J]. Journal of Fuel Chemistry and Technology,
;2014, 42(2): 219-224.
-
A series of Fe-Zr catalysts with different Fe2O3/ZrO2 molar ratios were prepared using ZrO(NO3)2·2H2O and Fe(NO3)3·9H2O as raw materials by means of microwave-hydrothermal method. Then,the catalysts were promoted with potassium by impregnation. The samples were characterized by XRD,SEM,TEM and N2 adsorption-desorption methods. The results showed that the catalysts prepared by microwave-hydrothermal method have a narrow particle size distribution,a lower BET specific surface area and a larger pore size compared with the traditional precipitation method. During the subsequent CO hydrogenation,it was shown that the product distribution was significantly improved with the addition of zirconium,and the suitable interaction between Fe-Zr and proper pore size were favorable for inhibiting the methane formation and enhance the olefin selectivity. With decreasing the Fe2O3/ZrO2 molar ratio,the interaction between Fe and Zr was strengthened,and the olefin selectivity and productivity first increased and then decreased. An olefin to paraffin ratio of 4.86 and light olefin productivity of 62.57 g/m3 could be obtained with a Fe2O3/ZrO2 molar ratio of 75:25 under conditions of H2/CO=2,340 ℃,1.5 MPa and 1 000 h-1.
-
-
-
[1]
[1] TORRES GALVIS H M, DE JONG K P. Catalysts for production of lower olefins from synthesis gas: A review[J]. ACS Catal, 2013, 3(9): 2130-2149.
-
[2]
[2] ZHANG Q H, DENG W P, WANG Y. Recent advances in understanding the key catalyst factors for Fischer-Tropsch synthesis[J]. J Energy Chem, 2013, 22(1): 27-38.
-
[3]
[3] TORRES GALVIS H M, BITTER J H, KHARE C B, RUITENBEEK M, IULIAN DUGULAN A, DE JONG K P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science, 2012, 335(6070): 835-838.
-
[4]
[4] 董丽, 杨学萍. 合成气直接制低碳烯烃技术发展前景[J]. 石油化工, 2012, 41(10): 1201-1206. (DONG Li, YANG Xue-ping. New advances in direct production of light olefins from syngas[J]. Petrochemical Technology, 2012, 41(10): 1201-1206.)
-
[5]
[5] 胡徐腾, 李振宇, 黄格省. 非石油原料生产烯烃技术现状分析与前景展望[J]. 石油化工, 2012, 41(8): 869-875. (HU Xu-teng, LI Zhen-yu, HUANG Ge-sheng. Present situation and prospect of olefin production technology from non-petroleum raw materials[J]. Petrochemical Technology, 2012, 41(8): 869-875.)
-
[6]
[6] CALDERONE V R, SHIJU N R, CURULLA-FERRÉD, CHAMBREY S, KHODAKOV A, ROSE A, THIESSEN J, JESS A, ROTHENBERG G. De novo design of nanostructured iron-cobalt Fischer-Tropsch catalysts[J]. Angew Chem Int Ed, 2013, 125(16): 4493-4497.
-
[7]
[7] YANG C, ZHAO H B, HOU Y L, MA D. Fe5C2 nanoparticles: A facile bromide-induced synthesis and as an active phase for Fischer-Tropsch synthesis[J]. J Am Chem Soc, 2012, 134(38): 15814-15821.
-
[8]
[8] WANG C F, PAN X L, BAO X H. Direct production of light olefins from syngas over a carbon nanotube confined iron catalyst[J]. Chinese Science Bulletin, 2010, 55(12): 1117-1119.
-
[9]
[9] 王虎林, 杨勇, 王洪, 相宏伟, 李永旺. Zn对沉淀铁催化剂结构及其F-T合成性能的影响[J]. 燃料化学学报, 2012, 40(1): 59-67. (WANG Hu-lin, YANG Yong, WANG Hong, XIANG Hong-wei, LI Yong-wang. Effects of Zn promoter on the structure and Fischer-Tropsch performance of iron catalyst[J]. Journal of Fuel Chemistry and Technology, 2012, 40(1): 59-67.)
-
[10]
[10] TORRES GALVIS H M, BITTER J H, DAVIDIAN T, RUITENBEEK M, IULIAN DUGULAN A, DE JONG K P. Iron particle size effects for direct production of lower olefins from synthesis gas[J]. J Am Chem Soc, 2012, 134(39): 16207-16215.
-
[11]
[11] ZHANG J L, FAN S B, ZHAO T S, LI W H, SUN Y H. Carbon modified Fe-Mn-K catalyst for the synthesis of light olefins from CO hydrogenation[J]. React Kinet Mech Cat, 2011, 102(2): 437-445.
-
[12]
[12] STEINER J, BAY K, WERNER V, AMANN J, BUNZEL S, MOβBACHER C, MÜLLER J, SCHWAB E, WEBER M. Iron-and manganese-comprising heterogeneous catalyst and process for preparing olefins by reacting carbon monoxide with hydrogen: US, 0112205A1[P]. 2011-5-12.
-
[13]
[13] FERRINI C. Process for the production of light olefins from synthesis gas: WO, 141374A1[P]. 2011-11-17.
-
[14]
[14] CARPENTER D. Method and apparatus for forming nano-particles: US, 7282167B2[P]. 2007-10-16.
-
[15]
[15] 汪根存, 张侃, 刘平, 惠海涛, 李文怀, 谭猗生. Fe-Mn催化剂浆态床合成低碳烯烃的反应性能[J]. 石油化工, 2012, 41(11): 1234-1238. (WANG Gen-cun, ZHANG Kan, LIU-Ping, HUI Hai-tao, LI Wen-huai, TAN Yi-sheng. Performance of Fe-Mn catalyst for preparation of light olefins in slurry bed reactor[J]. Petrochemical Technology, 2012, 41(11): 1234-1238.)
-
[16]
[16] ZHANG W, GAO R, SU G, YIN Y. Light olefins formation from syngas over ZrO2-ZnO catalysts[J]. Stud Surf Sci Catal, 1993, 75(3): 2793-2796.
-
[17]
[17] 张皓荐, 马宏方, 张海涛, 应卫勇, 房鼎业. Zr助剂对铁基催化剂F-T合成性能的影响[J]. 天然气化工(C1化学与化工), 2012, 37(2): 12-16. (ZHANG Hao-jian, MA Hong-fang, ZHANG Hai-tao, YING Wei-yong, FANG Ding-ye. Effect of Zr promoter on iron-based catalyst for Fischer-Tropsch synthesis[J]. Natural Gas Chemical Industry, 2012, 37(2): 12-16.)
-
[18]
[18] BONDIOLI F, FERRARI A M, LEONELLI C, SILIGARDI C, PELLACANI G C. Microwave-hydrothermal synthesis of nanocrystalline zirconia powders[J]. J Am Ceram Soc, 2001, 84(11): 2728-2730.
-
[19]
[19] KOMARNENI S, PIDUGU R, LI Q H, ROY R. Microwave-hydrothermal processing of metal powders[J]. J Mater Res, 1995, 10(7): 1687-1692.
-
[20]
[20] KATSUKI H, KOMARNENI S. Microwave-hydrothermal synthesis of monodispersed nanophase SymbolaA@-Fe2O3[J]. J Am Ceram Soc, 2001, 84(10): 2313-2317.
-
[21]
[21] OZKARA-AYDINOGLU S, ATAC O, GUL O F, KINAYYIGIT S, SAL S, BARANAK M, BOZ I. Alpha-olefin selectivity of Fe-Cu-K catalysts in Fischer-Tropsch synthesis: Effects of catalyst composition and process conditions[J]. Chem Eng J, 2012, 181: 581-589.
-
[22]
[22] DONG D C, HONG P J, DAI S S. Preparation of uniform α-Fe2O3 particles by microwave-induced hydrolysis of ferric salts[J]. Mater Res Bull, 1995, 30(5): 531-535.
-
[23]
[23] 吴东辉, 章忠秀, 施磊, 汪信. pH值对微波水热法制备纳米α-Fe2O3的控制作用[J]. 精细化工, 2003, 20(4): 212-214. (WU Dong-hui, ZHANG Zhong-xiu, SHI Lei, WANG Xin. Effect of pH value on preparation of nanon α-Fe2O3 by microwave hydrothermal method[J]. Fine Chemicals, 2003, 20(4): 212-214.)
-
[24]
[24] 徐文旸, 李瑞丰, 曹景慧, 窦涛, 马静红. 硅沸石-2在合成气制低碳烯烃中的催化作用[J]. 燃料化学学报, 1989, 17(2): 104-111. (XU Wen-yang, LI Rui-feng, CAO Jing-hui, DOU Tao, MA Jing-hong. Catalytic property of silicalite-2 for making light olefins from syngas[J]. Journal of Fuel Chemistry and Technology, 1989, 17(2): 104-111.)
-
[25]
[25] 马中义, 杨成, 董庆年, 魏伟, 陈建刚, 李文怀, 孙予罕. 不同形态ZrO2负载Co催化剂上CO+H2吸附与反应行为研究[J]. 高等学校化学学报, 2005, 26(5): 902-906. (MA Zhong-yi, YANG Cheng, DONG Qing-nian, WEI Wei, CHEN Jian-gang, LI Wen-huai, SUN Yu-han. Adsorption and reaction behavior over Co catalysts supported by different zirconia polymorphs[J]. Chemical Journal of Chinese Universities, 2005, 26(5): 902-906.)
-
[1]
-
-
-
[1]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[2]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
-
[3]
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054
-
[4]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
-
[5]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[6]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[7]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
-
[8]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[9]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[10]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[11]
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
-
[12]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[13]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[14]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[15]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[16]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[17]
Min LI , Xianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065
-
[18]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[19]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[20]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(571)
- HTML views(60)