Citation: YAN Heng, ZHANG Jun-ying, WANG Zhing-liang, ZHAO Yong-chun, TIAN Chong, ZHENG Chu-guang. CO2 sequestration by direct mineral carbonation of serpentine under medium and low pressure[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(6): 748-753. shu

CO2 sequestration by direct mineral carbonation of serpentine under medium and low pressure

  • Corresponding author: ZHANG Jun-ying, 
  • Received Date: 21 November 2012
    Available Online: 28 January 2013

    Fund Project: 国家自然科学基金(40972102,41172140) (40972102,41172140)国家重点基础研究发展规划(973计划,2011CB201500)。 (973计划,2011CB201500)

  • Serpentine was used as the mineral material for CO2 sequestration by direct mineral carbonation under medium and low pressure. A series number of experiments were carried out to investigate the factors that influence the conversion of carbonation reaction, such as temperature, pressure, particle size, solution composition and pretreatment. The results show that serpentine can be used to sequestrate CO2 in simulated flue gas by aqueous direct mineral carbonation under medium and low pressure. Carbonation conversion increases with increasing temperature and pressure. Decrease in mineral particle sizes and use of heat treatment before carbonation can effectively improve the conversion. The addition of NaHCO3, which has a buffering effect that kept the solution pH in a certain range, can also improve the carbonation conversion. The highest carbonation conversion of 47.7% and 36.3% was obtained in 60 min under 4 MPa and 150℃ for pure CO2 gas and simulated flue gas, respectively.
  • 加载中
    1. [1]

      [1] YANG H Q, XU Z H, FAN M H, GUPTA R, SLIMANE R B, BLAND A, WRINGHT I. Progress in carbon dioxide separation and capture: A review[J]. J Environ Sci, 2008, 20(1): 14-27.

    2. [2]

      [2] 郑楚光. 温室效应及其控制对策[M]. 北京: 中国电力出版社, 2001: 202. (ZHENG Chu-guang.Greenhouse effect and control measures[M].Beijing: China Electric Power Press, 2001: 202.)

    3. [3]

      [3] SEIFRITZ W. CO2 disposal by means of silicates[J]. Nature, 1990, 345(7): 486.

    4. [4]

      [4] DUNSMORE H. A geological perspective on global warming and the possibility of carbon dioxide removal as calcium carbonate mineral[J].Energy Convers Manage, 1992, 33(5-8): 565-572.

    5. [5]

      [5] LACKNER K S, WENDT C H, BUTT D P, JOYCE E L, SHARP D H.Carbon dioxide disposal in carbonate minerals[J]. Energy, 1995, 20(11): 1153-1170.

    6. [6]

      [6] KOJIMA T, NAGAMINE N, UENO N, UEMIYA S. Absorption and fixation of carbon dioxide by rock weathering[J]. Energy Convers Manage, 1997, 38(S): S461-S466.

    7. [7]

      [7] DANIEL J F, JOHN P B, SOONG Y, JAMES P K, BRETT H H,WILLIAM J G, MAROTO-VALER M M, JOHN M A. Carbon storage and sequestration as mineral carbonates[M]. New York: Kluwer Academic/Plenum Publishers, 2002: 101-118.

    8. [8]

      [8] GOFF F, LACKNER K S.Carbon dioxide sequestering using ultramafic rocks[J]. Environ Geosciences, 1998, 5(3): 89-101.

    9. [9]

      [9] O'CONNOR W K, DAHLIN D C, NILSEN D N, RUSH G E, WALTERS R P, TURNER P C. CO2 storage in solid form: A study of direct mineral carbonation. 5th International Conference on Greenhouse Gas Technologies, Cairns, Australia, 2000.

    10. [10]

      [10] MAROTO-VALER M M, FAUTH D J, KUCHTA M E, ZHANG Y, ANDRESEN J M. Activation of magnesium rich minerals as carbonation feedstock materials for CO2 sequestration[J]. Fuel Process Technol, 2005, 86(14-15): 1627-1645.

    11. [11]

      [11] HUIJGEN W J J, WITKAMP G J, COMANS R N J. Mineral CO2 sequestration by steel slag carbonation[J]. Environ Sci Technol, 2005, 39(24): 9676-9682.

    12. [12]

      [12] MONTES-HERNANDEZ G, PEREZ-LOPEZ R, RENARD F, NIETO J M, CHARLET L. Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly-ash[J]. J Hazard Mater, 2009, 161(2-3): 1347-1354.

    13. [13]

      [13] HUNTZINGER D N, GIERKE J S, SUTTER L L, KAWATRA S K, EISELE T C. Mineral carbonation for carbon sequestration in cement kiln dust from waste piles[J]. J Hazard Mater, 2009, 168(1): 31-37.

    14. [14]

      [14] ZHANG J Y, YAN H, ZHAO Y C, ZHENG C G.Experimental study on carbon dioxide sequestration by mineral carbonation[C]. 2010 International Pittsburgh Coal Conference, Istanbul, Turkey, 2010.

    15. [15]

      [15] 徐俊, 张军营, 潘霞, 郑楚光. CO2矿物碳酸化隔离实验初探[J].化工学报, 2006, 57(10): 1761-1764. (XU Jun, ZHANG Jun-ying, PAN Xia, ZHENG Chu-guang. Carbon dioxide sequestration as mineral carbonates[J]. Journal of Chemical Industry and Engineering, 2006, 57(10): 1761-1764.)

    16. [16]

      [16] 张军营, 赵永椿, 潘霞, 徐俊, 晏恒, 王志亮, 郑楚光. 硅灰石碳酸化隔离二氧化碳的实验研究[J]. 自然科学进展, 2008, 18(7): 836-840. (ZHANG Jun-ying, ZHAO Yong-chun, Pan Xia, XU Jun, YAN Heng, ZHENG Chu-guang. Experimental study of carbon dioxide sequestration as mineral carbonation using wollastonite[J]. Progress in Natural Science, 2008, 18(7): 836-840.)

    17. [17]

      [17] 晏恒, 张军营, 王志亮, 赵永椿, 郑楚光. 模拟烟气中CO2矿物碳酸化实验研究[J].中国电机工程学报, 2010, 30(11): 44-49. (YAN Heng, ZHANG Jun-ying, WANG Zhi-liang,ZHAO Yong-chun, ZHENG Chu-guang.Carbon dioxide sequestration by mineral carbonation in simulated flue gas using wollastonite[J]. Proceedings of the CSEE, 2010, 30(11): 44-49.)

    18. [18]

      [18] 张建树, 张荣, 毕继诚.CO2矿化反应基础研究Ⅰ. 镁橄榄石和蛇纹石盐酸浸出动力学研究[J].燃料化学学报, 2011, 39(9): 706-711. (ZHANG Jian-shu, ZHANG Rong, BI Ji-cheng.Fundamental research on CO2 mineralization:Ⅰ Leaching kinetics of forsterite and serpentine with hydrochloric acid[J]. Journal of Fuel Chemistry and Technology, 2011, 39(9): 706-711.)

    19. [19]

      [19] 高雄, 孟烨, 朱辰, 赵良. 氯化铵浸取纤蛇纹石动力学研究[J]. 中国岩溶, 2011, 30(4): 472-478. (GAO Xiong, MENG Ye, ZHU Chen, ZHAO Liang. Study on the kinetics of extracting chrysotile with ammonium chloride[J].Carsologica Sinica, 2011, 30(4): 472-478.)

    20. [20]

      [20] 高雄, 朱辰, 赵良. 灼烧处理对纤蛇纹石反应活性的影响[J]. 高校地质学报, 2012, 18(2): 273-279. (GAO Xiong, ZHU Chen, ZHAO Liang.Impact of heat-pretreatment on the reactivity between ammonium chloride and chrysotile[J]. Geological Journal of China Universities, 2012, 18(2): 273-279.)

    21. [21]

      [21] GUTHRIE G D, CAREY J W, BERGFELD D, BYLER D, CHIPERA S, ZIOCK H J. Geochemical aspects of the carbonation of magnesium silicates in an aqueous medium.Proceedings of the First NETL Conference on Carbon Sequestration, Washington DC, 2001.

    22. [22]

      [22] WU J C S, SHEEN J D, CHEN S Y, FAN Y C. Feasibility of CO2 fixation via artificial rock weathering[J].Ind Eng Chem Res, 2001, 40(18): 3902-3905.

    23. [23]

      [23] BEARAT H, MCKELVY M J, CHIZMESHYA A V G, GORM EY D, NUNEZ R, CARPENTER R W, SQUIRES K, WOLF G H. Carbon sequestration via aqueous olivine mineral carbonation: Role of passivating layer formation[J]. Environ Sci Technol, 2006, 40(15): 4802-4808.

    24. [24]

      [24] HUIJGEN W J J, WITKAMP G J, COMANS R N J. Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process[J]. Chem Eng Sci, 2006, 61(13): 4242-4251.

    25. [25]

      [25] SCHULZE R K, HILL M A, FIELD R D, PAPIN P A, HANRAHAN R J, BYLER D D. Characterization of carbonated serpentine using XPS and TEM[J]. Energy Convers Manage, 2004, 45(20): 3169-3179.

  • 加载中
    1. [1]

      Jiayi Yang Jianxiu Hao Huacong Zhou Quansheng Liu . “Gorgeous Transformation” of Carbon Dioxide into Cyclic Carbonates: Catalyst Types and Roles. University Chemistry, 2026, 41(2): 178-189. doi: 10.12461/PKU.DXHX202502105

    2. [2]

      Xiaolong Li Shiqi Zhong Xiangfeng Wei Zhiqiang Liu Pan Zhan Jiehua Liu . Carbon Dioxide: From the Past to the Future. University Chemistry, 2026, 41(2): 242-247. doi: 10.12461/PKU.DXHX202503013

    3. [3]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    4. [4]

      Hailian Cheng Shuaiqiang Jia Chunjun Chen Haihong Wu Buxing Han . Electrocatalytic CO2 Conversion: A Key to Unlocking a Low-Carbon Future. University Chemistry, 2026, 41(2): 1-13. doi: 10.12461/PKU.DXHX202502023

    5. [5]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    6. [6]

      Jiayin Hu Yafei Guo Long Li Tianlong Deng . Teaching Innovation of Salt-Water System Phase Diagrams under the “Dual Carbon” Background: Introducing the Pressurized CO2 Carbonization Phase Equilibria. University Chemistry, 2025, 40(11): 31-36. doi: 10.12461/PKU.DXHX202412031

    7. [7]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    8. [8]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    9. [9]

      Xiaomin Kang Chuanbao Jiao . Application of Metal-Organic Frameworks in CO2 Catalytic Conversion: Promoting “Double Carbon” Actions for a Beautiful China. University Chemistry, 2026, 41(2): 208-217. doi: 10.12461/PKU.DXHX202503011

    10. [10]

      Chen Lin Huanjun Xu . ‘Thank-You Letter’ from CO2: Development of Technology Has Changed My Image. University Chemistry, 2026, 41(2): 238-241. doi: 10.12461/PKU.DXHX202502048

    11. [11]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    12. [12]

      Yucai Zhang Jun Jiang . Electrochemical Carbon Dioxide Reduction to Ethylene. University Chemistry, 2026, 41(2): 190-196. doi: 10.12461/PKU.DXHX202503006

    13. [13]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    14. [14]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    15. [15]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    16. [16]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    17. [17]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    18. [18]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    19. [19]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    20. [20]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

Metrics
  • PDF Downloads(0)
  • Abstract views(679)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return