Citation: Hamzeh Kiyani, Maryam Ghiasi. Potassium phthalimide: An efficient and green organocatalyst for the synthesis of 4-aryl-7-(arylmethylene)-3, 4, 6, 7-tetrahydro-1Hcyclopenta[d]pyrimidin-2(5H)-ones/thiones under solvent-free conditions[J]. Chinese Chemical Letters, ;2014, 25(2): 313-316.
-
An efficient synthesis of Biginelli-type compounds using potassium phthalimide as a green, mild, and commercially available organocatalyst in a one-pot, multi-component cyclocondensation reaction of cyclopentanone, aldehydes, and urea/thiourea is reported. The present methodology is a green approach to access 4-aryl-7-(arylmethylene)-3,4,6,7-tetrahydro-1H-cyclopenta[d]pyrimidin-2(5H)-ones/thiones. It offers several merits such as simple operational procedures, no use of hazardous organic solvents, and cheap and environmentally friendly solid basic catalyst.
-
-
[1]
[1] T.U. Mayer, T.M. Kapoor, S.J. Haggarty, et al., Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen, Science 286 (1999) 971-974.
-
[2]
[2] Z. Maliga, T.M. Kapoor, T.J. Mitchison, Evidence that monastrol is an allosteric inhibitor of the mitotic kinesin Eg5, Chem. Biol. 9 (2002) 989-996.
-
[3]
[3] J.C. Barrow, P.G. Nantermet, H.G. Selnick, et al., In vitro and in vivo evaluation of dihydropyrimidinone C-5 amides as potent and selective alpha1A receptor antagonists for the treatment of benign prostatic hyperplasia, J. Med. Chem. 43 (2000) 2703-2718.
-
[4]
[4] C. Goldstein, J.C. Schroeder, J.P. Fortin, et al., Two naturally occurring mutations in the type 1 melanin-concentrating hormone receptor abolish agonist-induced signaling, J. Pharm. Exp. Ther. 335 (2010) 799-806.
-
[5]
[5] K.S. Atwal, B.N. Swanson, S.E. Unger, et al., Dihydropyrimidine calcium channel blockers. 3,3-carbamoyl-4-aryl-1,2,3,4-tetrahydro-6-methyl-5-pyrimidinecarbox- ylic acid esters as orally effective antihypertensive agents, J. Med. Chem. 34 (1991) 806-811.
-
[6]
[6] M. Matache, C. Dobrota, N.D. Bogdan, et al., Synthesis of fused dihydro-pyrimido[4, 3-d]coumarins using Biginelli multicomponent reaction as key step, Tetrahedron 65 (2009) 5949-5957.
-
[7]
[7] Y.X. Da, Z. Zhang, Z.J. Quan, Intermolecular cyclocondensation reaction of 3,4- dihydropyrimidine-2-thione under the Mitsunobu reaction conditions, Chin. Chem. Lett. 22 (2011) 679-682.
-
[8]
[8] T.N. Akhaja, J.P. Raval, Design, synthesis, in vitro evaluation of tetrahydropyrimidine- isatin hybrids as potential antibacterial, antifungal and anti-tubercular agents, Chin. Chem. Lett. 23 (2012) 446-449.
-
[9]
[9] A. Ghorbani-Choghamarani, P. Zamani, Three component reactions: An efficient and green synthesis of 3, 4-dihydropyrimidin-2-(1H)-ones and thiones using silica gel-supported l-pyrrolidine-2-carboxylic acid-4-hydrogen sulfate, Chin. Chem. Lett. 24 (2013) 804-808.
-
[10]
[10] S. Rostamnia, K. Lamei, Diketene-based neat four-component synthesis of the dihydropyrimidinones and dihydropyridine backbones using silica sulfuric acid (SSA), Chin. Chem. Lett. 23 (2012) 930-932.
-
[11]
[11] M.M. Heravi, N. Karimi, H. Hamidi, et al., Cu/SiO2: a recyclable catalyst for the synthesis of octahydroquinazolinone, Chin. Chem. Lett. 24 (2013) 143-144.
-
[12]
[12] C.O. Kappe, 100 years of the Biginelli dihydropyrimidine synthesis, Tetrahedron 49 (1993) 6937-6963.
-
[13]
[13] C.O. Kappe, Recent advances in the Biginelli dihydropyrimidine synthesis. New tricks from an old dog, Acc. Chem. Res. 33 (2000) 879-888.
-
[14]
[14] C.O. Kappe, Biologically active dihydropyrimidones of the Biginelli-type-a literature survey, Eur. J. Med. Chem. 35 (2000) 1043-1052.
-
[15]
[15] K.S. Atwal, G.C. Rovnyak, S.D. Kimball, et al., Dihydropyrimidine calcium channel blockers. 2, 3-substituted-4-aryl-1,4-dihydro-6-methyl-5-pyrimidinecarboxylic acid esters as potent mimics of dihydropyridines, J.Med. Chem. 33 (1990) 2629-2635.
-
[16]
[16] H.I. El-Subbagh, S.M. Abu-Zaid, M.A. Mahran, F.A. Badria, A.M. Al-Obaid, Synthesis and biological evaluation of certain a, b-unsaturated ketones and their corresponding fused pyridines as antiviral and cytotoxic agents, J. Med. Chem. 43 (2000) 2915-2921.
-
[17]
[17] Y.L. Zhu, S.L. Huang, Y.J. Pan, Highly chemoselective multi-component Biginellitype condensations of cycloalkanones, urea or thiourea and aldehydes, Eur. J. Org. Chem. 2005 (2005) 2354-2367.
-
[18]
[18] M. Hong, C. Cai, Three-component one-pot synthesis of pyrimidinone derivatives in fluorous media: ytterbium bis(perfluorooctanesulfonyl)imide complex catalyzed Biginelli-type reaction, J. Heterocycl. Chem. 46 (2009) 1430-1432.
-
[19]
[19] N.T.A. Dawoud, An efficient and environmentally friendly procedure for synthesis of quinazolinone derivatives by use of a Biginelli-type reaction, Chem. Sci. Trans. 2 (2013) 129-134.
-
[20]
[20] H.H. Zhang, Z.Q. Zhou, Z.G. Yao, F. Xu, Q. Shen, Efficient synthesis of pyrimidinone derivatives by ytterbium chloride catalyzed Biginelli-type reaction under solventfree conditions, Tetrahedron Lett. 50 (2009) 1622-1624.
-
[21]
[21] A.R. Hajipour, Y. Ghayeb, N. Sheikhan, A.E. Ruoho, Brønsted acidic ionic liquid as an efficient and reusable catalyst for one-pot, three-component synthesis of pyrimidinone derivatives via Biginelli-type reaction under solvent-free conditions, Synth. Commun. 41 (2011) 2226-2233.
-
[22]
[22] M. Rahman, A. Majee, A. Hajra, Microwave-assisted Brønsted acidic ionic liquidpromoted one-pot synthesis of heterobicyclic dihydropyrimidinones by a threecomponent coupling of cyclopentanone, aldehydes, and urea, J. Heterocycl. Chem. 47 (2010) 1230-1233.
-
[23]
[23] M. Lei, L. Ma, L.H. Hu, An efficient and environmentally friendly procedure for synthesis of pyrimidinone derivatives by use of a Biginelli-type reaction, Monatsh. Chem. 141 (2010) 1005-1008.
-
[24]
[24] M.I. Ali, A. El-Fotooh, G. Hammam, Reactions with (arylmethylene)cycloalkanones, 1,2,6-bis(arylmethylene)cyclohexanenes, J. Chem. Eng. Data 23 (1978) 351-352.
-
[25]
[25] G.E.H. Elgemeie, A.M.E. Attia, S.S. Alkabai, Nucleic acid components and their analogues: new synthesis of bicyclic thiopyrimidine nucleosides, Nucleos. Nucleot. Nucl. 19 (2000) 723-734.
-
[26]
[26] M.I. Ali, A. El-Fotooh, G. Hammam, N.M. Youssef, Reactions with (arylmethylene) cycloalkanones, 3,synthesis of 11-(arylmethylene)octahydrocycloocta[d]thiazolo[3,2-a]pyrimidin-3-one derivatives of expected biological activity, J. Chem. Eng. Data 26 (1981) 214-215.
-
[27]
[27] M.A. Al-Omar, K.M. Youssef, M.A. El-Sherbeny, S.A.A. Awadalla, H.I. El-Subbagh, Synthesis and in vitro antioxidant activity of some new fused pyridine analogs, Arch. Pharm. Chem. Life Sci. 338 (2005) 175-180.
-
[28]
[28] S.M. Rajesh, R.S. Kumar, L.A. Libertsen, et al., A green expedient synthesis of pyridopyrimidine-2-thiones and their antitubercular activity, Bioorg. Med. Chem. Lett. 21 (2011) 3012-3016.
-
[29]
[29] Z.L. Shen, X.P. Xu, S.J. Ji, Brønsted base-catalyzed one-pot three-component Biginelli-type reaction: an efficient synthesis of 4,5,6-triaryl-3,4-dihydropyrimidin- 2(1H)-one and mechanistic study, J. Org. Chem. 75 (2010) 1162-1167.
-
[30]
[30] F. Tamaddon, Z. Razmi, A.A. Jafari, Synthesis of 3,4-dihydropyrimidin-2(1H)-ones and 1,4-dihydropyridines using ammonium carbonate in water, Tetrahedron Lett. 51 (2010) 1187-1189.
-
[31]
[31] J.O. Metzger, Solvent-free organic syntheses, Angew. Chem. Int. Ed. 37 (1998) 2975-2978.
-
[32]
[32] M.S. Singh, S. Chowdhury, Recent developments in solvent-free multicomponent reactions: a perfect synergy for eco-compatible organic synthesis, RSC Adv. 2 (2012) 4547-4592.
-
[33]
[33] K.Tanaka, F.Toda, Solvent-free organic synthesis,Chem. Rev.100 (2000)1025-1074.
-
[34]
[34] M.J. Climent, A. Corma, S. Iborra, Homogeneous and heterogeneous catalysts for multicomponent reactions, RSC Adv. 2 (2012) 16-58.
-
[35]
[35] L. Chen, J. Zhao, S.F. Yin, C.T. Au, A mini-review on solid superbase catalysts developed in the past two decades, RSC Adv. 3 (2013) 3799-3814.
-
[36]
[36] M.J. Climent, A. Corma, S.B.A. Hamid, S. Iborra, M. Mifsud, Chemicals from biomass derived products: synthesis of polyoxyethyleneglycol esters from fatty acid methyl esters with solid basic catalysts, Green Chem. 8 (2006) 524-532.
-
[37]
[37] P.L. Salzberg, J.V. Supniewski, in: H. Gilman, A.H. Blatt (Eds.), Organic Synthesis Collection, 1, John Wiley, New York, 1995, p. 119.
-
[38]
[38] M.B. Smith, J. March, March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 5th ed., John Wiley, New York, 2001.
-
[39]
[39] S.H. Chan, K.H. Lam, C.H. Chui, et al., The preparation and in vitro antiproliferative activity of phthalimide based ketones on MDAMB-231 and SKHep-1 human carcinoma cell lines, Eur. J. Med. Chem. 44 (2009) 2736-2740.
-
[40]
[40] P. Singh, S. Kaur, S. Kumar, et al., Synthesis and in vitro cytotoxic evaluation of Nalkylbromo and N-alkylphthalimido-isatins, Bioorg. Med. Chem. Lett. 21 (2011) 3017-3020.
-
[41]
[41] C.I. Manley-King, J.J. Bergh, J.P. Petzer, Inhibition of monoamine oxidase by C5- substituted phthalimide analogues, Bioorg. Med. Chem. 19 (2011) 4829-4840.
-
[42]
[42] M.G. Dekamin, Z. Karimi, Activation of trimethylsilyl cyanide by potassium phthalimide for facile synthesis of TMS-protected cyanohydrins, J. Organomet. Chem. 694 (2009) 1789-1794.
-
[43]
[43] M.G. Dekamin, S. Sagheb-Asl, M.R. Naimi-Jamal, An expeditious synthesis of cyanohydrin trimethylsilyl ethers using tetraethylammonium 2-(carbamoyl)benzoate as a bifunctional organocatalyst, Tetrahedron Lett. 50 (2009) 4063-4066.
-
[44]
[44] A. Amoozadeh, S. Rahmani, F. Nemati, Poly(ethylene)glycol/AlCl3 as a new and efficient system for multicomponent Biginelli-type synthesis of pyrimidinone derivatives, Heterocycl. Commun. 19 (2013) 69-73.
-
[1]
-
-
[1]
Meiling Xu , Xinyang Li , Pengyuan Liu , Junjun Liu , Xiao Han , Guodong Chai , Shuangling Zhong , Bai Yang , Liying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860
-
[2]
Meng Shan , Yongmei Yu , Mengli Sun , Shuping Yang , Mengqi Wang , Bo Zhu , Junbiao Chang . Bifunctional organocatalyst-catalyzed dynamic kinetic resolution of hemiketals for synthesis of chiral ketals via hydrogen bonding control. Chinese Chemical Letters, 2025, 36(1): 109781-. doi: 10.1016/j.cclet.2024.109781
-
[3]
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2024.100199
-
[4]
Jun-Ming Cao , Kai-Yang Zhang , Jia-Lin Yang , Zhen-Yi Gu , Xing-Long Wu . Differential bonding behaviors of sodium/potassium-ion storage in sawdust waste carbon derivatives. Chinese Chemical Letters, 2024, 35(4): 109304-. doi: 10.1016/j.cclet.2023.109304
-
[5]
Yingfen Li , Zhiqi Wang , Yunhai Zhao , Dajun Luo , Xueliang Zhang , Jun Zhao , Zhenghua Su , Shuo Chen , Guangxing Liang . Potassium doping for grain boundary passivation and defect suppression enables highly-efficient kesterite solar cells. Chinese Chemical Letters, 2024, 35(11): 109468-. doi: 10.1016/j.cclet.2023.109468
-
[6]
Yang Li , Xiaoxu Liu , Tianyi Ji , Man Zhang , Xueru Yan , Mengjie Yao , Dawei Sheng , Shaodong Li , Peipei Ren , Zexiang Shen . Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109551-. doi: 10.1016/j.cclet.2024.109551
-
[7]
Cailing Wu , Shaojie Wu , Qifei Huang , Kai Sun , Xianqiang Huang , Jianji Wang , Bing Yu . Potassium-modified carbon nitride photocatalyzed-aminoacylation of N-sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110250-. doi: 10.1016/j.cclet.2024.110250
-
[8]
Tong Su , Yue Wang , Qizhen Zhu , Mengyao Xu , Ning Qiao , Bin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191
-
[9]
Zhong-Hui Sun , Yu-Qi Zhang , Zhen-Yi Gu , Dong-Yang Qu , Hong-Yu Guan , Xing-Long Wu . CoPSe nanoparticles confined in nitrogen-doped dual carbon network towards high-performance lithium/potassium ion batteries. Chinese Chemical Letters, 2025, 36(1): 109590-. doi: 10.1016/j.cclet.2024.109590
-
[10]
Jun-Ting Mo , Zheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360
-
[11]
Rui Wang , Yang Liang , Julius Rebek Jr. , Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228
-
[12]
Xin Li , Zhen Xu , Donglei Bu , Jinming Cai , Huamei Chen , Qi Chen , Ting Chen , Fang Cheng , Lifeng Chi , Wenjie Dong , Zhenchao Dong , Shixuan Du , Qitang Fan , Xing Fan , Qiang Fu , Song Gao , Jing Guo , Weijun Guo , Yang He , Shimin Hou , Ying Jiang , Huihui Kong , Baojun Li , Dengyuan Li , Jie Li , Qing Li , Ruoning Li , Shuying Li , Yuxuan Lin , Mengxi Liu , Peinian Liu , Yanyan Liu , Jingtao Lü , Chuanxu Ma , Haoyang Pan , JinLiang Pan , Minghu Pan , Xiaohui Qiu , Ziyong Shen , Shijing Tan , Bing Wang , Dong Wang , Li Wang , Lili Wang , Tao Wang , Xiang Wang , Xingyue Wang , Xueyan Wang , Yansong Wang , Yu Wang , Kai Wu , Wei Xu , Na Xue , Linghao Yan , Fan Yang , Zhiyong Yang , Chi Zhang , Xue Zhang , Yang Zhang , Yao Zhang , Xiong Zhou , Junfa Zhu , Yajie Zhang , Feixue Gao , Yongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055
-
[13]
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
-
[14]
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
-
[15]
Kebo Xie , Qian Zhang , Fei Ye , Jungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028
-
[16]
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
-
[17]
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
-
[18]
Zhuwen Wei , Jiayan Chen , Congzhen Xie , Yang Chen , Shifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677
-
[19]
Guoliang Gao , Guangzhen Zhao , Guang Zhu , Bowen Sun , Zixu Sun , Shunli Li , Ya-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557
-
[20]
Xuhui Fan , Fan Wang , Mengjiao Li , Faiza Meharban , Yaying Li , Yuanyuan Cui , Xiaopeng Li , Jingsan Xu , Qi Xiao , Wei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(652)
- HTML views(4)