Citation: Hong-Wei Tang, Ning Gao, Zhao-Rong Chang, Bao Li, Xao-Zi Yuan, Hai-Jiang Wang. Electrochemical performance of NaCo2O4 as electrode for supercapacitors[J]. Chinese Chemical Letters, ;2014, 25(2): 269-272. shu

Electrochemical performance of NaCo2O4 as electrode for supercapacitors

  • Corresponding author: Zhao-Rong Chang, 
  • Received Date: 9 June 2013
    Available Online: 12 November 2013

    Fund Project: This work was financially supported by the Natural Science Foundation of China (No. 21071046) under approval. (No. 21071046)

  • Sub-micron-scaled sodium cobalt oxide (NaCo2O4) powders are prepared by a solid-state reaction method. Characterization using X-ray diffraction indicates that the synthesized NaCo2O4 has a hexagonal layered structure. The electrochemical performance of the NaCo2O4 electrodes is investigated using cyclic voltammetry and galvanostatic charge/discharge in NaOH solution. The results show that the specific capacitance of the NaCo2O4 electrode reaches 337 F/g over the potential range of 0.15-0.65 V at a mass normalized current of 50 mA/g. Moreover, NaCo2O4 exhibits very good stability and cycling performance as a supercapacitor material.
  • 加载中
    1. [1]

      [1] A.S. Aricò1, P. Bruce, B. Scrosati, J.M. Tarascon, W. Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater. 4 (2005) 366-377.

    2. [2]

      [2] P. Hall, M. Mirzaeian, S. Fletcher, et al., Energy storage in electrochemical capacitors: designing functional materials to improve performance, Energy Environ. Sci. 3 (2010) 1238-1251.

    3. [3]

      [3] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater. 7 (2008) 845-854.

    4. [4]

      [4] M.G. Sullivan, R. Kötz, O. Haas, Thick active layers of electrochemically modified glassy carbon. Electrochemical impedance studies, J. Electroehem. Soc. 147 (2000) 308-317.

    5. [5]

      [5] R. Salige, U. Fischer, C. Herta, J. Fricke, High surface area carbon aerogels for supercapacitors, J. Non-Cryst. Solids 225 (1998) 81-85.

    6. [6]

      [6] C.C. Hu, W.C. Chen, K.H. Chang, How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors, J. Electrochem. Soc. 151 (2004) A281-A290.

    7. [7]

      [7] C. Liu, F. Li, L.P. Ma, H.M. Cheng, Advanced materials for energy storage, Adv. Mater. 22 (2010) E28-E62.

    8. [8]

      [8] K.T. Lee, C.B. Tsai, W.H. Ho, N.L. Wu, Superabsorbent polymer binder for achieving MnO2 supercapacitors of greatly enhanced capacitance density, Electrochem. Commun. 12 (2010) 886-889.

    9. [9]

      [9] X.H. Xia, J.P. Tu, X.L. Wang, C.D. Gu, X.B. Zhao, Hierarchically porous NiO film grown by chemical bath deposition via a colloidal crystal template as an electrochemical pseudocapacitor material, J. Mater. Chem. 21 (2011) 671-679.

    10. [10]

      [10] W. Zhang, Y.H. Qu, L.J. Guo, Performance of PbO2/activated carbonhybrid supercapacitor with carbon foam substrate, Chin. Chem. Lett. 23 (2012) 623-626.

    11. [11]

      [11] Q.T. Qua, Y. Shi, S. Tian, et al., A new cheap asymmetric aqueous supercapacitor: activated carbon//NaMnO2, J. Power Sources 194 (2009) 1222-1225.

    12. [12]

      [12] L.R. Wang, F. Ran, Y.T. Tan, L. Zhao, L.B. Kong, L. Kang, Coral reel-like polyanaline manotubes prepared by a reactive template of manganese oxide for supercapacitor, Chin. Chem. Lett. 22 (2011) 964-968.

    13. [13]

      [13] Q.T. Qu, L. Li, S. Tian, et al., A cheap asymmetric supercapacitor with high energy at high power: activated carbon//K0.27MnO2 ·0.6H2O, J. Power Sources 195 (2010) 2789-2794.

    14. [14]

      [14] J.P. Zheng, P.J. Cygan, T.R. Jow, Hydrous ruthenium oxide as an electrode material for electrochemical capacitors, J. Electrochem. Soc. 142 (1995) 2699-2703.

    15. [15]

      [15] V. Gupta, N. Miura, Electrochemically deposited polyaniline nanowire's network a high-performance electrode material for redox supercapacitor, Electrochem. Solid State Lett. 8 (2005) A630-A632.

    16. [16]

      [16] V. Gupta, N. Miura, Influence of the microstructure on the supercapacitive behavior of polyaniline/single-wall carbon nanotube composites, J. Power Sources 157 (2006) 616-620.

    17. [17]

      [17] I. Terasaki, Y. Sasago, K. Uchinokura, Large thermoelectric power in NaCo2O4 single crystals, Phys. Rev. B 56 (1997) 12685-12687.

    18. [18]

      [18] C. Fouassier, G. Matejka, J.M. Reau, P. Hagenmuller, Sur de nouveaux bronzes oxygéné s de formule NaxCoO21). Le système cobalt-oxygène-sodium, J. Solid State Chem. 6 (1973) 532-537.

    19. [19]

      [19] M. Jansen, R. Hoppe, Notiz zur Kenntnis der Oxocobaltate des Natriums, Z. Anorg. Allg. Chem. 408 (1974) 104-106.

    20. [20]

      [20] I. Terasaki, Transport properties and electronic states of the thermoelectric oxide NaCo2O4, Phys. Rev. B 328 (2003) 63-67.

    21. [21]

      [21] L. Athouël, F. Moser, R. Dugas, et al., Variation of the MnO2 birnessite structure upon charge/discharge in an electrochemical supercapacitor electrode in aqueous Na2SO4 electrolyte, J. Phys. Chem. C 112 (2008) 7270-7277.

    22. [22]

      [22] A. Caballero, L. Hernán, J. Morales, L. Sánchez, J. Santos, Ion-exchange properties of P2-NaxMnO2: evidence of the retention of the layer structure based on chemical reactivity data and electrochemical measurements of lithium cells, J. Solid State Chem. 174 (2003) 365-371.

    23. [23]

      [23] O.A. Shlyakhtin, A.M. Skundin, S.J. Yoon, Y.J. Oh, Ni-Mn hydroxides as new high power electrode materials for supercapacitor applications, Mater. Lett. 63 (2009) 109-112.

    24. [24]

      [24] C. Portet, P.L. Taberna, P. Simon, C. Laberty-Robert, Modification of Al current collector surface by sol-gel deposit for carbon-carbon supercapacitor applications, Electrochim. Acta 49 (2004) 905-912.

    25. [25]

      [25] X. Zhang, P. Yu, H.T. Zhang, et al., Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO2 nanosheets for supercapacitor applications, Electrochim. Acta 89 (2013) 523-529.

    26. [26]

      [26] Z.C. Li, H.L. Bao, X.Y. Miao, X.H. Chen, A facile route to growth of γ-MnOOH nanorods and electrochemical capacitance properties, J. Colloid Interf. Sci. 357 (2011) 286-291.

  • 加载中
    1. [1]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    2. [2]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    3. [3]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    4. [4]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    5. [5]

      Xinyu Huai Jingxuan Liu Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158

    6. [6]

      Shaohua ZhangLiyao LiuYingqiao MaChong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749

    7. [7]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    8. [8]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    9. [9]

      Yan-Jiang LiShu-Lei ChouYao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389

    10. [10]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    11. [11]

      Guilong LiWenbo MaJialing ZhouCaiqin WuChenling YaoHuan ZengJian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449

    12. [12]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    13. [13]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    14. [14]

      Fengxing LiangYongzheng ZhuNannan WangMeiping ZhuHuibing HeYanqiu ZhuPeikang ShenJinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461

    15. [15]

      Hanying LiWee-Liat Ong . “Super-heterojunctioned” thermoelectric polymers. Chinese Chemical Letters, 2025, 36(2): 110523-. doi: 10.1016/j.cclet.2024.110523

    16. [16]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    17. [17]

      Jun-Ming CaoKai-Yang ZhangJia-Lin YangZhen-Yi GuXing-Long Wu . Differential bonding behaviors of sodium/potassium-ion storage in sawdust waste carbon derivatives. Chinese Chemical Letters, 2024, 35(4): 109304-. doi: 10.1016/j.cclet.2023.109304

    18. [18]

      Yufei LiuLiang XiongBingyang GaoQingyun ShiYing WangZhiya HanZhenhua ZhangZhaowei MaLimin WangYong Cheng . MOF-derived Cu based materials as highly active catalysts for improving hydrogen storage performance of Mg-Ni-La-Y alloys. Chinese Chemical Letters, 2024, 35(12): 109932-. doi: 10.1016/j.cclet.2024.109932

    19. [19]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    20. [20]

      Binyang QinMengqi WangShimei WuYining LiChilin LiuYufei ZhangHaosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921

Metrics
  • PDF Downloads(0)
  • Abstract views(758)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return