Citation: Fu-Min Xue, Ming-Hui Liang, Zhen-Hua Wang, Ling-Yu Luan, Fu-Wei Li, Yan Cheng, Guang-Sheng Shao. The preparation and performance of visible-light-sensitized luminescent nanoparticles based on europium complex[J]. Chinese Chemical Letters, ;2014, 25(2): 247-252. shu

The preparation and performance of visible-light-sensitized luminescent nanoparticles based on europium complex

  • Corresponding author: Fu-Min Xue, 
  • Received Date: 30 September 2013
    Available Online: 15 October 2013

    Fund Project:

  • Long-wavelength-sensitized luminescent materials are desired for bio-detection. In this paper, we prepared a new kind of luminescent europium nanoparticles by a co-precipitation-condensation method. The luminescent europiumcomplex Eu(tta)3·bpt (tta = thenoyltrifluoroacetonate; bpt = 2-(N,N-di- ethylanilin-4-yl)-4,6-bis(pyrazol-1-yl)-1,3,5-triazine) was used as the active material, being encapsulated in the nanoparticles formed from 1H, 1H, 2H, 2H-perfluorooctyltrimethoxysilane (PFOTS) and poly(styrene-co-methyl methacrylate) [P(ST-co-MMA)]. The prepared nanoparticles not only can be well dispersed in water but also were of high photostability. Importantly, the nanoparticles displayed maximal excitation wavelength at 425 nm as well as an extended excitation wavelength up to 480 nm and a quantum yield for Eu3+ luminescence of 0.22 (λex = 425 nm, room temperature).
  • 加载中
    1. [1]

      [1] T. Soukka, H. Härmä, J. Paukkunen, T. Lövgren, Utilization of kinetically enhanced monovalent binding affinity by immunoassays based on multivalent nanoparticle- antibody bioconjugates, Anal. Chem. 73 (2001) 2254-2260.

    2. [2]

      [2] M.Q. Tan, G.L. Wang, X.D. Hai, Z.Q. Ye, J.L. Yuan, Development of functionalized fluorescent europium nanoparticles for biolabeling and time-resolved fluorometric applications, J. Mater. Chem. 14 (2004) 2896-2901.

    3. [3]

      [3] J.L. Yuan, K. Matsumoto, H. Kimura, A new tetradentate β-diketonate-europium chelate that can be covalently bound to proteins for time-resolved fluoroimmunoassay, Anal. Chem. 70 (1998) 596-601.

    4. [4]

      [4] I. Hemmilä, V. Laitala, Progress in lanthanides as luminescent probes, J. Fluoresc. 15 (2005) 529-542.

    5. [5]

      [5] J.L. Yuan, G.L. Wang, Lanthanide-based luminescence probes and time-resolved luminescence bioassays, Trends Anal. Chem. 25 (2006) 490-500.

    6. [6]

      [6] Y. Chen, Y.M. Chi, H.M. Wen, Z.H. Lu, Sensitized luminescent terbium nanoparticles: preparation and time-resolved fluorescence assay for DNA, Anal. Chem. 79 (2007) 960-965.

    7. [7]

      [7] Y. Chen, Z.H. Lu, Dye sensitized luminescent europium nanoparticles and its timeresolved fluorometric assay for DNA, Anal. Chim. Acta 587 (2007) 180-186.

    8. [8]

      [8] K. Hashino, K. Ikawa, M. Ito, et al., Application of a fluorescent lanthanide chelate label on a solid support device for detecting DNA variation with ligation-based assay, Anal. Biochem. 364 (2007) 89-91.

    9. [9]

      [9] A. Son, A. Dhirapong, D.K. Dosev, et al., Rapid and quantitative DNA analysis of genetic mutations for polycystic kidney disease (PKD) using magnetic/luminescent nanoparticles, Anal. Bioanal. Chem. 390 (2008) 1829-1835.

    10. [10]

      [10] A.M. Nonat, S.J. Quinn, T. Gunnlaugsson, Mixed f-d coordination complexes as dual visible- and near-infrared-emitting probes for targeting DNA, Inorg. Chem. 48 (2009) 4646-4648.

    11. [11]

      [11] D.A. Heller, E.S. Jeng, T.K. Yeung, et al., Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes, Science 311 (2006) 508-511.

    12. [12]

      [12] A. Bodi, K.E. Borbas, J.I. Bruce, Near IR-emitting DNA-probes exploiting stepwise energy transfer processes, Dalton Trans. 38 (2007) 4352-4358.

    13. [13]

      [13] A. D'Alé o, G. Pompidor, B. Elena, et al., Two-photon microscopy and spectroscopy of lanthanide bioprobes, ChemPhysChem 8 (2007) 2125-2132.

    14. [14]

      [14] A. Picot, A. D'Alé o, P.L. Baldeck, et al., Long-lived two-photon excited luminescence of water-soluble europium complex: applications in biological imaging using two-photon scanning microscopy, J. Am. Chem. Soc. 130 (2008) 1532-1533.

    15. [15]

      [15] G.L. Law, K.L. Wong, C.W.Y. Man, et al., Emissive terbium probe for multiphoton in vitro cell imaging, J. Am. Chem. Soc. 130 (2008) 3714-3715.

    16. [16]

      [16] G.L. Law, K.L.Wong, C.W.Y.Man, S.W. Tsao,W.T.Wong, A two-photon europium complex as specific endoplasmic reticulum probe, J. Biophoton. 2 (2009) 718-724.

    17. [17]

      [17] B. Song, G.L. Wang, M.Q. Tan, J.L.A. Yuan, Europium(Ⅲ) complex as an efficient singlet oxygen luminescence probe, J. Am. Chem. Soc. 128 (2006) 13442-13450.

    18. [18]

      [18] J.C.G. Bünzli, A.S. Chauvin, C.D.B. Vandevyver, B. Song, S. Comby, Lanthanide bimetallic helicates for in vitro imaging and sensing, Ann. N. Y. Acad. Sci. 1130 (2008) 97-105.

    19. [19]

      [19] B.Y. Wu, H.F. Wang, J.T. Chen, X.P. Yan, Fluorescence resonance energy transfer inhibition assay for a-fetoprotein excreted during cancer cell growth using functionalized persistent luminescence nanoparticles, J. Am. Chem. Soc. 133 (2011) 686-688.

    20. [20]

      [20] S.W. Yang, H. Li, Assaying dynamic cell-cell junctional communication using noninvasive and quantitative fluorescence imaging techniques: LAMP and infrared- LAMP, Nat. Protoc. 4 (2009) 94-101.

    21. [21]

      [21] J.C.G. Bünzli, A.S. Chauvin, H.K. Kim, E. Deiters, S.V. Eliseeva, Lanthanide luminescence efficiency in eight- and nine-coordinate complexes: role of the radiative lifetime, Coord. Chem. Rev. 254 (2010) 2623-2633.

    22. [22]

      [22] J.C.G. Bünzli, S. Comby, A.S. Chauvin, C.D.B. Vandevyver, New opportunities for lanthanide luminescence, J. Rare Earths 25 (2007) 257-274.

    23. [23]

      [23] J.L. Zhang, B.W. Chen, X. Luo, K. Du, Eu(Ⅲ) complex-doped PMMA having fast radiation rate and high emission quantum efficiency, Chin. Chem. Lett. 23 (2012) 945-948.

    24. [24]

      [24] H.Q. Chen, J. Xu, F. Yuan, et al., A "turn off" luminescence resonance energy transfer aptamer sensor based on near-infrared upconverting NaYF4:Yb3+, Tm3+ nanoparticles as donors and gold nanorods as acceptors, Chin. Chem. Lett. 24 (2013) 79-81.

    25. [25]

      [25] J.C.G. Bünzli, C. Piguet, Taking advantage of luminescent lanthanide ions, Chem. Soc. Rev. 34 (2005) 1048-1077.

    26. [26]

      [26] G.S. He, L.S. Tan, Q. Zheng, P.N. Prasad, Multi-photon absorbing materials: molecular designs, syntheses, characterizations, and applications, Chem. Rev. 108 (2008) 1245-1330.

    27. [27]

      [27] C. Yang, L.M. Fu, Y. Wang, et al., A highly luminescent europium complex showing visible-light-sensitized red emission: direct observation of the singlet pathway, Angew. Chem. Int. Ed. 43 (2004) 5010-5013.

    28. [28]

      [28] L.M. Fu, X.F. Wen, X.C. Ai, et al., Efficient two-photon-sensitized luminescence of a europium(Ⅲ) complex, Angew. Chem. Int. Ed. 44 (2005) 747-750.

    29. [29]

      [29] R. Hao, M.Y. Li, Y. Wang, et al., A europium complex with excellent two-photonsensitized luminescence properties, Adv. Funct. Mater. 17 (2007) 3663-3669.

    30. [30]

      [30] F.M. Xue, Y. Ma, L.M. Fu, et al., A europium complex with enhanced longwavelength sensitized luminescent properties, Phys. Chem. Chem. Phys. 12 (2010) 3195-3202.

    31. [31]

      [31] J.C.G. Bünzli, Lanthanide luminescence for biomedical analyses and imaging, Chem. Rev. 110 (2010) 2722-2729.

    32. [32]

      [32] V. Divya, V. Sankar, K.G. Raghu, et al., A mitochondria-specific visible-light sensitized europium β-diketonate complex with red emission, Dalton Trans. 42 (2013) 12317-12323.

    33. [33]

      [33] V. Divya, M.L.P. Reddy, Visible-light excited red emitting luminescent nanocomposites derived from Eu3+-phenathrene-based fluorinated β-diketonate complexes and multi-walled carbon nanotubes, J. Mater. Chem. C 1 (2013) 160-170.

    34. [34]

      [34] J. Xu, Z.H. Sun, L. Jia, et al., Visible light sensitized attapulgite-based lanthanide composites: microstructure, photophysical behaviour and biological application, Dalton Trans. 40 (2011) 12909-12916.

    35. [35]

      [35] G.S. Shao, R.C. Han, Y. Ma, et al., Bionanoprobes with excellent two-photonsensitized Eu3+ luminescence properties for live cell imaging, Chem. Eur. J. 16 (2010) 8647-8651.

    36. [36]

      [36] G.S. Shao, F.M. Xue, R.C. Han, M.X. Tang, Y. Wang, Synthesis and characterization of europium complex nanoparticles with long-wavelength sensitized luminescence, Acta Phys. Chim. Sin. 26 (2010) 2031-2036.

    37. [37]

      [37] X.Y. Fu, G.S. Shao, R.C. Han, et al., Nanoprobes with enhanced two-photonsensitized Eu3+ luminescence properties for live cell imaging, Acta Phys. Chim. Sin. 28 (2012) 2480-2486.

    38. [38]

      [38] J. Wu, G.L. Wang, D.Y. Jin, et al., Luminescent europium nanoparticles with a wide excitation range from UV to visible light for biolabeling and time-gated luminescence bioimaging, Chem. Commun. 3 (2008) 365-367.

    39. [39]

      [39] J. Wu, Z.Q. Ye, G.L. Wang, et al., Visible-light-sensitized highly luminescent europium nanoparticles: preparation and application for time-gated luminescence bioimaging, J. Mater. Chem. 19 (2009) 1258-1264.

    40. [40]

      [40] L.N. Jiang, J. Wu, G.L. Wang, et al., Development of a visible-light-sensitized europium complex for time-resolved fluorometric application, Anal. Chem. 82 (2010) 2529-2535.

    41. [41]

      [41] L. Tian, Z.C. Dai, L. Zhang, et al., Preparation and time-gated luminescence bioimaging applications of long wavelength-excited silica-encapsulated europium nanoparticles, Nanoscale 4 (2012) 3551-3557.

    42. [42]

      [42] Y. Wang, X.Y. Fu, G.S. Shao, Photoluminescent nanoparticle, preparation, and application, China, CN 200910203407.3 [P] 2010.

    43. [43]

      [43] H.S. Peng, M.I.J. Stich, J.B. Yu, et al., Luminescent europium(Ⅲ) nanoparticles for sensing and imaging of temperature in the physiological range, Adv. Mater. 22 (2010) 716-719.

    44. [44]

      [44] J.N. Demas, G.A. Crosby, The measurement of photoluminescence quantum yields, J. Phys. Chem. 75 (1971) 991-1024.

  • 加载中
    1. [1]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    2. [2]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    3. [3]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    4. [4]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    5. [5]

      Chuanfeng FanJian GaoYingkai GaoXintong YangGaoning LiXiaochun WangFei LiJin ZhouHaifeng YuYi HuangJin ChenYingying ShanLi Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838

    6. [6]

      Han-Min WangYan-Chen LiLu-Lu SunMing-Ye TangJia LiuJiahao CaiLei DongJia LiYi ZangHai-Hao HanXiao-Peng He . Protein-encapsulated long-wavelength fluorescent probe hybrid for imaging lipid droplets in living cells and mice with non-alcoholic fatty liver. Chinese Chemical Letters, 2024, 35(11): 109603-. doi: 10.1016/j.cclet.2024.109603

    7. [7]

      Xingxing JiangYuxin ZhaoYan KongJianju SunShangzhao FengXin LuQi HuHengpan YangChuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555

    8. [8]

      Jun-Ting MoZheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360

    9. [9]

      Junmei FANWei LIURuitao ZHUChenxi QINXiaoling LEIHaotian WANGJiao WANGHongfei HAN . High sensitivity detection of baicalein by N, S co-doped carbon dots and their application in biofluids. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2009-2020. doi: 10.11862/CJIC.20240120

    10. [10]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    11. [11]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    12. [12]

      Si-Hua Liu Jun-Hao Zhou Jian-Ke Sun . Interconnecting zero-dimensional porous organic cages into sub-8 nm nanofilm for bio-inspired separation. Chinese Journal of Structural Chemistry, 2024, 43(7): 100312-100312. doi: 10.1016/j.cjsc.2024.100312

    13. [13]

      Saadullah KhattakHong-Tao XuJianliang Shen . Bio-electronic bandage: Self-powered performances to accelerate intestinal wound healing. Chinese Chemical Letters, 2024, 35(12): 110210-. doi: 10.1016/j.cclet.2024.110210

    14. [14]

      Zhi LiWenpei LiShaoping JiangChuan HuYuanyu HuangMaxim ShevtsovHuile GaoShaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150

    15. [15]

      Feng CuiFangman ChenXiaochun XieChenyang GuoKai XiaoZiping WuYinglu ChenJunna LuFeixia RuanChuanxu ChengChao YangDan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681

    16. [16]

      Bohan ChenLiming GongJing FengMingji JinLiqing ChenZhonggao GaoWei Huang . Research advances of nanoparticles for CAR-T therapy in solid tumors. Chinese Chemical Letters, 2024, 35(9): 109432-. doi: 10.1016/j.cclet.2023.109432

    17. [17]

      Wei SuXiaoyan LuoPeiyuan LiYing ZhangChenxiang LinKang WangJianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522

    18. [18]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    19. [19]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    20. [20]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

Metrics
  • PDF Downloads(0)
  • Abstract views(646)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return